Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure

被引:97
作者
Dalton, Douglas Allen [1 ]
Hsieh, Wen-Pin [2 ,3 ]
Hohensee, Gregory T. [2 ,3 ]
Cahill, David G. [2 ,3 ]
Goncharov, Alexander F. [1 ]
机构
[1] Carnegie Inst Washington, Geophys Lab, Washington, DC USA
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
POST-PEROVSKITE; LOWER-MANTLE; MGSIO3; PEROVSKITE; DIFFUSIVITY; SCATTERING; VISCOSITY; WAVES;
D O I
10.1038/srep02400
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal conductivity of mantle materials controlling the heat balance and thermal evolution of the Earth remains poorly constrained as the available experimental and theoretical techniques are limited in probing minerals under the relevant conditions. We report measurements of thermal conductivity of MgO at high pressure up to 60 GPa and 300 K via diamond anvil cells using the time-domain thermoreflectance technique. These measurements are complemented by model calculations which take into account the effect of temperature and mass disorder of materials within the Earth. Our model calculations agree with the experimental pressure dependencies at 300 and 2000 K for MgO. Furthermore, they predict substantially smaller pressure dependence for mass disordered materials as the mechanism of scattering changes. The calculated thermal conductivity at the core-mantle boundary is smaller than the majority of previous predictions resulting in an estimated total heat flux of 10.4 TW, which is consistent with modern geomodeling estimates.
引用
收藏
页数:5
相关论文
共 37 条
[1]   TECHNIQUES FOR DETERMINING THERMAL-CONDUCTIVITY AND HEAT-CAPACITY UNDER HYDROSTATIC-PRESSURE [J].
ANDERSSON, S ;
BACKSTROM, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1986, 57 (08) :1633-1639
[2]  
Cahill D., 2004, REV SCI INSTRUM, V75
[3]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[4]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[5]   Thermal conductivity of compressed H2O to 22 GPa: A test of the Leibfried-Schlomann equation [J].
Chen, Bin ;
Hsieh, Wen-Pin ;
Cahill, David G. ;
Trinkle, Dallas R. ;
Li, Jie .
PHYSICAL REVIEW B, 2011, 83 (13)
[6]  
Cohen R.E., 1998, R REV HIGH PRESSURE, V7, P160, DOI DOI 10.4131/JSHPREVIEW.7.160
[7]   Thermal conductivity of MgO periclase at high pressure: Implications for the D" region [J].
de Koker, Nico .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 292 (3-4) :392-398
[8]   Thermal Conductivity of MgO Periclase from Equilibrium First Principles Molecular Dynamics [J].
de Koker, Nico .
PHYSICAL REVIEW LETTERS, 2009, 103 (12)
[9]   Ab initio Lattice Thermal Conductivity of MgSiO3 Perovskite as Found in Earth's Lower Mantle [J].
Dekura, Haruhiko ;
Tsuchiya, Taku ;
Tsuchiya, Jun .
PHYSICAL REVIEW LETTERS, 2013, 110 (02)