CONTROL AND ADAPTIVE MODIFIED FUNCTION PROJECTIVE SYNCHRONIZATION OF LIU CHAOTIC DYNAMICAL SYSTEM

被引:3
作者
El-Dessoky, M. M. [1 ,2 ]
Alzahrani, E. O. [1 ]
Almohammadi, N. A. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Math Dept, POB 80203, Jeddah 21589, Saudi Arabia
[2] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2019年 / 9卷 / 02期
关键词
Feedback control method; Liu chaotic dynamical system; Routh-Hurwitz criterion; Lyapunov stability; projective synchronization; GENERALIZED SYNCHRONIZATION; HYPERCHAOTIC SYSTEMS;
D O I
10.11948/2156-907X.20180119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the feedback control method is proposed to control the behaviour of Liu chaotic dynamical system. The controlled system is stable under some conditions on the parameters of the system determined by Routh-Hurwitz criterion. This paper also presents the adaptive modified function projective synchronization (AMFPS) between two identical Liu chaotic dynamical systems. Based on the Lyapunov stability theorem, adaptive control laws are designed to achieving the AMFPS. Finally, some numerical simulations are obtained to validate the proposed methods.
引用
收藏
页码:601 / 614
页数:14
相关论文
共 40 条
[1]   On the analysis of stability, bifurcation, chaos and chaos control of Kopel map [J].
Agiza, HN .
CHAOS SOLITONS & FRACTALS, 1999, 10 (11) :1909-1916
[2]   Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method [J].
Agrawal, S. K. ;
Das, S. .
JOURNAL OF PROCESS CONTROL, 2014, 24 (05) :517-530
[3]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[4]   Modified projective synchronization of chaotic systems with disturbances via active sliding mode control [J].
Cai, Na ;
Jing, Yuanwei ;
Zhang, Siying .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1613-1620
[5]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[6]   On some controllability conditions for chaotic dynamics control [J].
Chen, GR .
CHAOS SOLITONS & FRACTALS, 1997, 8 (09) :1461-1470
[7]   Function projective synchronization between two identical chaotic systems [J].
Chen, Yong ;
Li, Xin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05) :883-888
[8]   Control of a fractional-order economical system via sliding mode [J].
Dadras, Sara ;
Momeni, Hamid Reza .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (12) :2434-2442
[9]   Function projective synchronization of different chaotic systems with uncertain parameters [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
PHYSICS LETTERS A, 2008, 372 (33) :5402-5410
[10]   Synchronization and anti-synchronization of a hyperchaotic Chen system [J].
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (04) :1790-1797