The existence of multiple positive periodic solutions for functional differential equations

被引:3
作者
Jiang, Weihua [1 ,2 ]
机构
[1] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
[2] Hebei Normal Univ, Coll Math & Sci Informat, Shijiazhuang 050016, Hebei, Peoples R China
关键词
Positive periodic solution; Fixed point index; Cone; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1016/j.amc.2008.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of multiple positive solutions for the integral equation x(t) = integral(t+omega)(t) G(t, s) b(s)f(s, x(s - tau(1)(s)), ... , x(s - tau(n)(s)))ds is studied by using fixed point index theory. Using these results we obtain new results on the existence of multiple positive periodic solutions for some first order periodic functional differential equations. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 9 条
[1]   Periodic solutions for functional-differential equations of mixed type [J].
Buica, Adriana ;
Ilea, Veronica Ana .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) :576-583
[2]  
Deimling K., 1985, NONLINEAR FUNCTIONAL
[3]  
Guo D., 1988, NONLINEAR PROBLEM AB
[4]   Positive solutions for boundary value problems of functional differential equations [J].
Ma, Ruyun .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) :66-72
[5]  
Nussbaum R. D., 1981, Lecture Notes in Mathematics, V886, P309, DOI DOI 10.1007/BFB0092191
[6]   Existence of positive periodic solutions for a class of functional differential equations [J].
Sun, Yan ;
Han, Maoan ;
Debnath, Lokenath .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) :699-704
[7]   Positive periodic solutions of functional differential equations [J].
Wang, HY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 202 (02) :354-366
[8]   Boundary value problems for functional differential equations [J].
Xu, HK ;
Liz, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (7-8) :971-988
[9]   Existence of periodic solutions of a scalar functional differential equation via a fixed point theorem [J].
Zhang, Weipeng ;
Zhu, Deming ;
Bi, Ping .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (5-6) :718-729