Folner tilings for actions of amenable groups

被引:15
作者
Conley, Clinton T. [1 ]
Jackson, Steve C. [2 ]
Kerr, David [3 ]
Marks, Andrew S. [4 ]
Seward, Brandon [5 ]
Tucker-Drob, Robin D. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ North Texas, Dept Math, Denton, TX 76203 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[5] Courant Inst Math Sci, New York, NY 10012 USA
关键词
DIMENSION;
D O I
10.1007/s00208-017-1633-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every probability-measure-preserving action of a countable amenable group G can be tiled, modulo a null set, using finitely many finite subsets of G ("shapes") with prescribed approximate invariance so that the collection of tiling centers for each shape is Borel. This is a dynamical version of the Downarowicz-Huczek-Zhang tiling theorem for countable amenable groups and strengthens the Ornstein-Weiss Rokhlin lemma. As an application we prove that, for every countably infinite amenable group G, the crossed product of a generic free minimal action of G on the Cantor set is z-stable.
引用
收藏
页码:663 / 683
页数:21
相关论文
共 24 条
[1]  
Bosa J., MEM AM MATH IN PRESS
[2]  
Ceccherini-Silberstein T, 1999, P STEKLOV I MATH, V224, P57
[3]  
Downarowicz T., J REINE ANG IN PRESS
[4]   BOREL ORACLES. AN ANALYTICAL APPROACH TO CONSTANT-TIME ALGORITHMS [J].
Elek, Gabor ;
Lippner, Gabor .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (08) :2939-2947
[5]  
Elliott G., ARXIV150703437
[6]  
Gong G., ARXIV150100135
[7]  
Guentner E, 2017, MATH ANN, V367, P785, DOI 10.1007/s00208-016-1395-0
[8]   Tracially Z-absorbing C*-algebras [J].
Hirshberg, Ilan ;
Orovitz, Joav .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (05) :765-785
[9]   Genericity in topological dynamics [J].
Hochman, Michael .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 :125-165
[10]  
Jiang XH, 1999, AM J MATH, V121, P359