Unwinding Toric Degenerations and Mirror Symmetry for Grassmannians

被引:1
作者
Coates, Tom [1 ]
Doran, Charles [2 ]
Kalashnikov, Elana [3 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[3] Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
14J33; 14M15; 52B20; DUALITY; MODULI;
D O I
10.1017/fms.2022.98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The most fundamental example of mirror symmetry compares the Fermat hypersurfaces in P-n and P-n/G, where G is a finite group that acts on P-n and preserves the Fermat hypersurface. We generalize this to hypersurfaces in Grassmannians, where the picture is richer and more complex. There is a finite group G that acts on the Grassmannian Gr(n, r) and preserves an appropriate Calabi-Yau hypersurface. We establish how mirror symmetry, toric degenerations, blow-ups and variation of GIT relate the Calabi-Yau hypersurfaces inside Gr(n, r) and Gr(n, r)/G. This allows us to describe a compactification of the Eguchi-Hori-Xiong mirror to the Grassmannian, inside a blow-up of the quotient of the Grassmannian by G.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] MIRROR SYMMETRY FOR LOG CALABI-YAU SURFACES I
    Gross, Mark
    Hacking, Paul
    Keel, Sean
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122): : 65 - 168
  • [32] SYZ mirror symmetry for del Pezzo surfaces and affine structures
    Lau, Siu-Cheong
    Lee, Tsung-Ju
    Lin, Yu-Shen
    ADVANCES IN MATHEMATICS, 2024, 439
  • [33] 3d N = 4 Bootstrap and Mirror Symmetry
    Chang, Chi-Ming
    Fluder, Martin
    Lin, Ying-Hsuan
    Shao, Shu-Heng
    Wang, Yifan
    SCIPOST PHYSICS, 2021, 10 (04):
  • [34] 3D Mirror Symmetry for Instanton Moduli Spaces
    Koroteev, Peter
    Zeitlin, Anton M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (02) : 1005 - 1068
  • [35] Homological mirror symmetry for hypertoric varieties I: Conic equivariant sheaves
    McBreen, Michael
    Webster, Ben
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1005 - 1063
  • [36] Tangles, generalized Reidemeister moves, and three-dimensional mirror symmetry
    Cordova, Clay
    Espahbodi, Sam
    Haghighat, Babak
    Rastogi, Ashwin
    Vafa, Cumrun
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (05):
  • [37] Mirror Symmetry between Orbifold Curves and Cusp Singularities with Group Action
    Ebeling, Wolfgang
    Takahashi, Atsushi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (10) : 2240 - 2270
  • [38] Mirror symmetry and bosonization in 2d and 3d
    Karch, Andreas
    Tong, David
    Turner, Carl
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [39] On mirror symmetry for Calabi-Yau fourfolds with three-form cohomology
    Greiner, Sebastian
    Grimm, Thomas W.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (09):
  • [40] Mirror symmetry on levels of non-abelian Landau-Ginzburg orbifolds
    Ebeling, Wolfgang
    Gusein-Zade, Sabir M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 179