Unwinding Toric Degenerations and Mirror Symmetry for Grassmannians

被引:1
作者
Coates, Tom [1 ]
Doran, Charles [2 ]
Kalashnikov, Elana [3 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[3] Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
14J33; 14M15; 52B20; DUALITY; MODULI;
D O I
10.1017/fms.2022.98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The most fundamental example of mirror symmetry compares the Fermat hypersurfaces in P-n and P-n/G, where G is a finite group that acts on P-n and preserves the Fermat hypersurface. We generalize this to hypersurfaces in Grassmannians, where the picture is richer and more complex. There is a finite group G that acts on the Grassmannian Gr(n, r) and preserves an appropriate Calabi-Yau hypersurface. We establish how mirror symmetry, toric degenerations, blow-ups and variation of GIT relate the Calabi-Yau hypersurfaces inside Gr(n, r) and Gr(n, r)/G. This allows us to describe a compactification of the Eguchi-Hori-Xiong mirror to the Grassmannian, inside a blow-up of the quotient of the Grassmannian by G.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] LANDAU-GINZBURG MODELS IN REAL MIRROR SYMMETRY
    Walcher, Johannes
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) : 2865 - 2883
  • [22] Recent Developments in (0,2) Mirror Symmetry
    Melnikov, Ilarion
    Sethi, Savdeep
    Sharpe, Eric
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [23] Some Steps Towards Noncommutative Mirror Symmetry on the Torus
    Schlesinger, Karl-Georg
    QUANTUM FIELD THEORY: COMPETITIVE MODELS, 2009, : 83 - 94
  • [24] Conifold transitions via affine geometry and mirror symmetry
    Castano-Bernard, Ricardo
    Matessi, Diego
    GEOMETRY & TOPOLOGY, 2014, 18 (03) : 1769 - 1863
  • [25] MIRROR SYMMETRY VIA LOGARITHMIC DEGENERATION DATA, II
    Gross, Mark
    Siebert, Bernd
    JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (04) : 679 - 780
  • [26] Rational Q-systems, Higgsing and mirror symmetry
    Gu, Jie
    Jiang, Yunfeng
    Sperling, Marcus
    SCIPOST PHYSICS, 2023, 14 (03):
  • [27] Mirror symmetry & supersymmetry on SU(4)-structure backgrounds
    Minasian, Ruben
    Prins, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [28] Coulomb branch operators and mirror symmetry in three dimensions
    Dedushenko, Mykola
    Fam, Yale
    Pufu, Silviu S.
    Yacoby, Ran
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [29] Three-Dimensional Mirror Symmetry and Elliptic Stable Envelopes
    Rimanyi, Richard
    Smirnov, Andrey
    Zhou, Zijun
    Varchenko, Alexander
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (13) : 10016 - 10094
  • [30] Non-Abelian mirror symmetry beyond the chiral ring
    Fan, Yale
    Wang, Yifan
    PHYSICAL REVIEW D, 2020, 101 (08)