Unwinding Toric Degenerations and Mirror Symmetry for Grassmannians

被引:1
作者
Coates, Tom [1 ]
Doran, Charles [2 ]
Kalashnikov, Elana [3 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[3] Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
14J33; 14M15; 52B20; DUALITY; MODULI;
D O I
10.1017/fms.2022.98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The most fundamental example of mirror symmetry compares the Fermat hypersurfaces in P-n and P-n/G, where G is a finite group that acts on P-n and preserves the Fermat hypersurface. We generalize this to hypersurfaces in Grassmannians, where the picture is richer and more complex. There is a finite group G that acts on the Grassmannian Gr(n, r) and preserves an appropriate Calabi-Yau hypersurface. We establish how mirror symmetry, toric degenerations, blow-ups and variation of GIT relate the Calabi-Yau hypersurfaces inside Gr(n, r) and Gr(n, r)/G. This allows us to describe a compactification of the Eguchi-Hori-Xiong mirror to the Grassmannian, inside a blow-up of the quotient of the Grassmannian by G.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] The B-model connection and mirror symmetry for Grassmannians
    Marsh, B. R.
    Rietsch, K.
    ADVANCES IN MATHEMATICS, 2020, 366
  • [2] Toric degenerations of spherical varieties
    Alexeev V.
    Brion M.
    Selecta Mathematica, 2005, 10 (4) : 453 - 478
  • [3] Quantum K-theory of toric varieties, level structures, and 3d mirror symmetry
    Ruan, Yongbin
    Wen, Yaoxiong
    Zhou, Zijun
    ADVANCES IN MATHEMATICS, 2022, 410
  • [4] Toric Degenerations, Tropical Curve, and Gromov-Witten Invariants of Fano Manifolds
    Nishinou, Takeo
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (03): : 667 - 695
  • [5] Computational Mirror Symmetry
    Demirtas, Mehmet
    Kim, Manki
    McAllister, Liam
    Moritz, Jakob
    Rios-Tascon, Andres
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (01)
  • [6] Statistical mirror symmetry
    Zhang, Jun
    Khan, Gabriel
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 73
  • [7] Bosonization and mirror symmetry
    Kachru, Shamit
    Mulligan, Michael
    Torroba, Gonzalo
    Wang, Huajia
    PHYSICAL REVIEW D, 2016, 94 (08)
  • [8] Mirror symmetry and automorphisms
    Chiodo, Alessandro
    Kalashnikov, Elana
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [9] Quantum mirror symmetry and twistors
    Alexandrov, Sergei
    Saueressig, Frank
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [10] Theta functions and mirror symmetry
    Gross, Mark
    Siebert, Bernd
    ADVANCES IN GEOMETRY AND MATHEMATICAL PHYSICS, 2016, 21 : 95 - 138