The Rayleigh wave field in mixed problems for a half-plane

被引:14
作者
Erbas, Baris [1 ]
Kaplunov, Julius [2 ]
Prikazchikov, Danila A. [3 ]
机构
[1] Anadolu Univ, Dept Math, TR-26470 Eskisehir, Turkey
[2] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[3] Bauman Moscow State Tech Univ, Dept Computat Math & Math Phys, Moscow 1005005, Russia
关键词
asymptotic model; Rayleigh wave; mixed boundary value problem; SURFACE;
D O I
10.1093/imamat/hxs010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The note develops an approximate approach to mixed boundary value problems in linear elasticity starting from an explicit asymptotic model for the Rayleigh surface wave. It is demonstrated that the original vector mixed problem may be reduced to a scalar problem for the Laplace equation. As an illustration, the steady-state motion of a rigid stamp is analysed. Comparison of asymptotic and exact results is presented.
引用
收藏
页码:1078 / 1086
页数:9
相关论文
共 8 条
[1]  
Achenbach JD., 1973, Wave propagation in elastic solids
[2]   SURFACE AND INTERFACIAL WAVES OF ARBITRARY FORM IN ISOTROPIC ELASTIC MEDIA [J].
CHADWICK, P .
JOURNAL OF ELASTICITY, 1976, 6 (01) :73-80
[3]   A long-wave model for the surface elastic wave in a coated half-space [J].
Dai, H. -H. ;
Kaplunov, J. ;
Prikazchikov, D. A. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2122) :3097-3116
[4]  
Kaplunov J, 2006, IMA J APPL MATH, V71, P768, DOI [10.1093/imamat/hxl012, 10.1093/imamat/hx1012]
[5]   A revisit to the moving load problem using an asymptotic model for the Rayleigh wave [J].
Kaplunov, J. ;
Nolde, E. ;
Prikazchikov, D. A. .
WAVE MOTION, 2010, 47 (07) :440-451
[6]   Omni-directional Rayleigh, Stoneley and Scholte waves with general time dependence [J].
Kiselev, A. P. ;
Parker, D. F. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2120) :2241-2258
[7]   A brief historical perspective of the Wiener-Hopf technique [J].
Lawrie, Jane B. ;
Abrahams, I. David .
JOURNAL OF ENGINEERING MATHEMATICS, 2007, 59 (04) :351-358
[8]  
SVESHNIKOV A. G., 1978, THEORY FUNCTIONS COM