Existence and uniqueness results for large solutions of general nonlinear elliptic equations

被引:80
作者
Marcus, M [1 ]
Véron, L
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Univ Tours, Lab Math & Phys Theor, CNRS, UMR 6083, F-37200 Tours, France
关键词
elliptic equations; Keller-Osserman a priori estimate; maximal solutions; super and sub solutions;
D O I
10.1007/s00028-003-0122-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study under what condition there exists a solution of -Deltau + f(u) = 0 in a domain Omega which blows-up on the boundary, independently of the regularity of the boundary, and we provide criteria for uniqueness. We apply our results to the case f (u) = e(au).
引用
收藏
页码:637 / 652
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 1943, DIFFERENTIALUND INTE
[2]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS AND THEIR DERIVATIVES, FOR SEMILINEAR ELLIPTIC PROBLEMS WITH BLOWUP ON THE BOUNDARY [J].
BANDLE, C ;
MARCUS, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (02) :155-171
[3]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[4]  
Bieberbach L, 1915, MATH ANN, V77, P173
[5]  
BREZIS H, 1980, ARCH RATION MECH AN, V75, P1
[6]  
BREZIS H, 1980, SOME VARIATIONAL PRO, P53
[7]   Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities [J].
Chasseigne, E ;
Vazquez, JL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (02) :133-187
[8]   Wiener's test for super-Brownian motion and the Brownian snake [J].
Dhersin, JS ;
LeGall, JF .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (01) :103-129
[9]  
Fabbri J, 2002, ADV NONLINEAR STUD, V2, P147
[10]  
FABBRI J, 2002, COMMUNICATION