A hierarchy of integrable lattice soliton equations and new integrable symplectic map

被引:0
作者
Sun, YP [1 ]
Chen, DY
Xu, XX
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China
关键词
lattice soliton equation; discrete Hamiltonian structure; integrable symplectic map;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a discrete spectral problem, a hierarchy of integrable lattice soliton equations is derived. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure. A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a Backlund transformation for the resulting integrable lattice equations. At last, conservation laws of the hierarchy are presented.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 33 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]   INTEGRABLE DISCRETIZATIONS OF THE KDV EQUATION [J].
BOGOYAVLENSKY, OI .
PHYSICS LETTERS A, 1988, 134 (01) :34-38
[3]   INTEGRABLE SYMPLECTIC MAPS [J].
BRUSCHI, M ;
RAGNISCO, O ;
SANTINI, PM ;
TU, GZ .
PHYSICA D, 1991, 49 (03) :273-294
[4]   From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation [J].
Cao, CW ;
Geng, XG ;
Wu, YT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46) :8059-8078
[5]  
CAO CW, 1990, SCI CHINA SER A, V33, P528
[6]  
Cao CW., 1990, NONLINEAR PHYSICS RE, P68
[7]  
CHEN DY, 1987, J PHYS A-MATH GEN, V20, P313, DOI 10.1088/0305-4470/20/2/017
[8]   Lie algebraic structures of some (1+2)-dimensional Lax integrable systems [J].
Chen, DY ;
Xin, HW ;
Zhang, DJ .
CHAOS SOLITONS & FRACTALS, 2003, 15 (04) :761-770
[9]   Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints [J].
Li, YS ;
Ma, WX .
CHAOS SOLITONS & FRACTALS, 2000, 11 (05) :697-710
[10]   Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations [J].
Ma, WX ;
Fuchssteiner, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2400-2418