Fully Automated Segmentation of Bladder Sac and Measurement of Detrusor Wall Thickness from Transabdominal Ultrasound Images

被引:14
作者
Akkus, Zeynettin [1 ]
Kim, Bae Hyung [2 ]
Nayak, Rohit [3 ]
Gregory, Adriana [3 ]
Alizad, Azra [2 ,3 ]
Fatemi, Mostafa [2 ]
机构
[1] Mayo Clin, Dept Cardiol, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Radiol, Rochester, MN 55905 USA
关键词
bladder segmentation; deep learning; detrusor muscle thickness; dynamic programming; transabdominal ultrasound; OUTLET OBSTRUCTION; MEN; DIAGNOSIS; CHILDREN; WOMEN;
D O I
10.3390/s20154175
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ultrasound measurements of detrusor muscle thickness have been proposed as a diagnostic biomarker in patients with bladder overactivity and voiding dysfunction. In this study, we present an approach based on deep learning (DL) and dynamic programming (DP) to segment the bladder sac and measure the detrusor muscle thickness from transabdominal 2D B-mode ultrasound images. To assess the performance of our method, we compared the results of automated methods to the manually obtained reference bladder segmentations and wall thickness measurements of 80 images obtained from 11 volunteers. It takes less than a second to segment the bladder from a 2D B-mode image for the DL method. The average Dice index for the bladder segmentation is 0.93 +/- 0.04 mm, and the average root-mean-square-error and standard deviation for wall thickness measurement are 0.7 +/- 0.2 mm, which is comparable to the manual ground truth. The proposed fully automated and fast method could be a useful tool for segmentation and wall thickness measurement of the bladder from transabdominal B-mode images. The computation speed and accuracy of the proposed method will enable adaptive adjustment of the ultrasound focus point, and continuous assessment of the bladder wall during the filling and voiding process of the bladder.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 31 条
[1]  
Adibi Atoosa, 2014, Adv Biomed Res, V3, P188, DOI 10.4103/2277-9175.140397
[2]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[3]   FULLYAUTOMATED AND ROBUST TRACKING OF TRANSIENT WAVES IN STRUCTURED ANATOMIES USING DYNAMIC PROGRAMMING [J].
Akkus, Zeynettin ;
Bayat, Mahdi ;
Cheong, Mathew ;
Viksit, Kumar ;
Erickson, Bradley J. ;
Alizad, Azra ;
Fatemi, Mostafa .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2016, 42 (10) :2504-2512
[4]   FULLY AUTOMATED CAROTID PLAQUE SEGMENTATION IN COMBINED CONTRAST-ENHANCED AND B-MODE ULTRASOUND [J].
Akkus, Zeynettin ;
Carvalho, Diego D. B. ;
van den Oord, Stijn C. H. ;
Schinkel, Arend F. L. ;
Niessen, Wiro J. ;
de Jong, Nico ;
van der Steen, Antonius F. W. ;
Klein, Stefan ;
Bosch, Johan G. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2015, 41 (02) :517-531
[5]   Motion Compensation Method using Dynamic Programming for Quantification of Neovascularization in Carotid Atherosclerotic Plaques with Contrast Enhanced Ultrasound (CEUS) [J].
Akkus, Zeynettin ;
Hoogi, Assaf ;
Renaud, Guillaume ;
ten Kate, Gerrit L. ;
van den Oord, Stijn C. H. ;
Schinkel, Arend F. L. ;
de Jong, Nico ;
van der Steen, Antonius F. W. ;
Bosch, Johan G. .
MEDICAL IMAGING 2012: ULTRASONIC IMAGING, TOMOGRAPHY, AND THERAPY, 2012, 8320
[6]  
[Anonymous], 2010, JMLR WORKSHOP C P
[7]   Correlation of ultrasound bladder vibrometry assessment of bladder compliance with urodynamic study results [J].
Bayat, Mahdi ;
Kumar, Viksit ;
Denis, Max ;
Webb, Jeremy ;
Gregory, Adriana ;
Mehrmohammadi, Mohammad ;
Cheong, Mathew ;
Husmann, Douglas ;
Mynderse, Lance ;
Alizad, Azra ;
Fatemi, Mostafa .
PLOS ONE, 2017, 12 (06)
[8]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[9]   Ultrasound assessment of detrusor muscle thickness in children with non-neuropathic bladder/sphincter dysfunction [J].
Cvitkovic-Kuzmic, A ;
Brkljacic, B ;
Ivankovic, D ;
Grga, A .
EUROPEAN UROLOGY, 2002, 41 (02) :214-218
[10]   Non-Invasive Techniques in the Diagnosis of Bladder Storage Disorders [J].
Farag, Fawzy F. ;
Heesakkers, John P. .
NEUROUROLOGY AND URODYNAMICS, 2011, 30 (08) :1422-1428