The Newtonian limit in a family of metric affine theories of gravitation

被引:10
作者
Barraco, DE [1 ]
Guibert, R [1 ]
Hamity, VH [1 ]
Vucetich, H [1 ]
机构
[1] UNIV NACL LA PLATA,ASTRON OBSERV,RA-2000 LA PLATA,ARGENTINA
关键词
D O I
10.1007/BF02106971
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A brief review of a first order theory with a quadratic Lagrangian L = R + omega(0)R(2) is presented. It is shown that a test particle follows a geodesic of the metric connection. The theory behaves in the Newtonian limit as the Newtonian theory with a correction which is proportional to the matter density at the field point. This behavior can be produced by a Yukawa potential with an atomic scale characteristic range lambda and a coupling constant ct proportional to 1/lambda(2). This type of potential is not excluded by the present experimental data.
引用
收藏
页码:339 / 345
页数:7
相关论文
共 20 条
[1]  
BARRACO D, 1994, GEN RELAT GRAVIT, V25, P461
[2]   TORSION AND NON-METRICITY IN SCALAR TENSOR THEORIES OF GRAVITY [J].
BERTHIAS, JP ;
SHAHIDSALESS, B .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (05) :1039-1044
[3]   ONE-LOOP DIVERGENCES OF EINSTEIN-YANG-MILLS SYSTEM [J].
DESER, S ;
TSAO, HS ;
VANNIEUWENHUIZE.P .
PHYSICAL REVIEW D, 1974, 10 (10) :3337-3342
[4]  
Eddington AS., 1924, The Mathematical Theory of Relativity
[5]   UNIFIED GEOMETRIC-THEORY OF ELECTROMAGNETIC AND GRAVITATIONAL INTERACTIONS [J].
FERRARIS, M ;
KIJOWSKI, J .
GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (01) :37-47
[6]   VARIATIONAL FORMULATION OF GENERAL-RELATIVITY FROM 1915 TO 1925 PALATINI METHOD DISCOVERED BY EINSTEIN IN 1925 [J].
FERRARIS, M ;
FRANCAVIGLIA, M ;
REINA, C .
GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (03) :243-254
[7]   INITIAL CONDITIONS FOR R+EPSILON-R2 COSMOLOGY [J].
MIJIC, MB ;
MORRIS, MS ;
SUEN, WM .
PHYSICAL REVIEW D, 1989, 39 (06) :1496-1510
[8]   GAUSS LAW TEST OF GRAVITY AT SHORT-RANGE [J].
MOODY, MV ;
PAIK, HJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1195-1198
[9]   TESTING THE INVERSE-SQUARE LAW OF GRAVITY - A NEW CLASS OF TORSION PENDULUM NULL EXPERIMENTS [J].
MOORE, MW ;
BOUDREAUX, A ;
DEPUE, M ;
GUTHRIE, J ;
LEGERE, R ;
YAN, A ;
BOYNTON, PE .
CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (6A) :A97-A117
[10]  
Pechlaner E., 1966, COMMUN MATH PHYS, V2, P165, DOI DOI 10.1007/BF01773351