Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines

被引:93
作者
Batten, W. M. J. [1 ]
Harrison, M. E. [2 ]
Bahaj, A. S. [1 ]
机构
[1] Univ Southampton, Fac Engn & Environm, Energy & Climate Change Div, Sustainable Energy Res Grp, Southampton SO17 1BJ, Hants, England
[2] Marine Current Turbines Ltd, Bristol BS16 7FR, Avon, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 371卷 / 1985期
基金
英国工程与自然科学研究理事会;
关键词
tidal energy; actuator disc; RANS; computational fluid dynamics; wake; MARINE CURRENT TURBINES; SIMULATIONS; POWER;
D O I
10.1098/rsta.2012.0293
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence.
引用
收藏
页数:14
相关论文
共 34 条
[1]   A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms [J].
Ammara, I ;
Leclerc, C ;
Masson, C .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (04) :345-356
[2]  
[Anonymous], P WORLD REN EN C WRE
[3]  
[Anonymous], 1972, PROBABILITY STAT ENG
[4]  
Ansys, 2010, ANS CFX ICEM US GUID
[5]   Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank [J].
Bahaj, A. S. ;
Molland, A. F. ;
Chaplin, J. R. ;
Batten, W. M. J. .
RENEWABLE ENERGY, 2007, 32 (03) :407-426
[6]  
Bai Luolin., 2009, Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, P654
[7]   Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar [J].
Barthelmie, R. J. ;
Folkerts, L. ;
Larsen, G. C. ;
Rados, K. ;
Pryor, S. C. ;
Frandsen, S. T. ;
Lange, B. ;
Schepers, G. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2006, 23 (07) :888-901
[8]  
Batchelor GK, 1963, SCI PAPERS GI TAYLOR
[9]   The prediction of the hydrodynamic performance of marine current turbines [J].
Batten, W. M. J. ;
Bahaj, A. S. ;
Molland, A. F. ;
Chaplin, J. R. .
RENEWABLE ENERGY, 2008, 33 (05) :1085-1096
[10]  
Blunden L.S., 2009, P 8 EUR WAV TID EN C