Simplified vine copula models: Approximations based on the simplifying assumption

被引:13
作者
Spanhel, Fabian [1 ,2 ]
Kurz, Malte S. [2 ,3 ]
机构
[1] Ludwig Maximilian Univ Munchen, Dept Stat, Akad Str 1, D-80799 Munich, Germany
[2] Ludwig Maximilian Univ MUnchen, Ctr Quantitat Risk Anal, Akad Str 1, D-80799 Munich, Germany
[3] Scalable Capital GmbH, Quantitat Investment Strategy, Prinzregentenstr 48, D-80538 Munich, Germany
关键词
Vine copula; pair-copula construction; simplifying assumption; partial vine copula; conditional copula; PAIR-COPULA; DEPENDENCE; CONSTRUCTIONS;
D O I
10.1214/19-EJS1547
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Vine copulas, or pair-copula constructions, have become an important tool in high-dimensional dependence modeling. Commonly, it is assumed that the data generating copula can be represented by a simplified vine copula (SVC). In this paper, we study the simplifying assumption and investigate the approximation of multivariate copulas by SVCs. We introduce the partial vine copula (PVC) which is a particular SVC where to any edge a j-th order partial copula is assigned. The PVC generalizes the partial correlation matrix and plays a major role in the approximation of copulas by SVCs. We investigate to what extent the PVC describes the dependence structure of the underlying copula. We show that, in general, the PVC does not minimize the Kullback-Leibler divergence from the true copula if the simplifying assumption does not hold. However, under regularity conditions, stepwise estimators of pair-copula constructions converge to the PVC irrespective of whether the simplifying assumption holds or not. Moreover, we elucidate why the PVC is often the best feasible SVC approximation in practice.
引用
收藏
页码:1254 / 1291
页数:38
相关论文
共 38 条
[21]   Flexible pair-copula estimation in D-vines using bivariate penalized splines [J].
Kauermann, Goeran ;
Schellhase, Christian .
STATISTICS AND COMPUTING, 2014, 24 (06) :1081-1100
[22]   Flexible Copula Density Estimation with Penalized Hierarchical B-splines [J].
Kauermann, Goeran ;
Schellhase, Christian ;
Ruppert, David .
SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (04) :685-705
[23]   Factor copula models for multivariate data [J].
Krupskii, Pavel ;
Joe, Harry .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 120 :85-101
[24]  
Kurowicka D., 2011, DEPEND MODEL, P833
[25]  
Kurz M.S., 2017, ARXIV170602338
[26]   Dependence structure of conditional Archimedean copulas [J].
Mesfioui, Mhamed ;
Quessy, Jean-Francois .
JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (03) :372-385
[27]   Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas [J].
Nagler, Thomas ;
Czado, Claudia .
JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 151 :69-89
[28]  
Nelsen BR, 2006, INTRO COPULAS, V2nd, DOI [10.1007/0-387-28678-0, DOI 10.1007/0-387-28678-0]
[29]   Vine copulas with asymmetric tail dependence and applications to financial return data [J].
Nikoloulopoulos, Aristidis K. ;
Joe, Harry ;
Li, Haijun .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (11) :3659-3673
[30]   Modelling asymmetric exchange rate dependence [J].
Patton, AJ .
INTERNATIONAL ECONOMIC REVIEW, 2006, 47 (02) :527-556