Simplified vine copula models: Approximations based on the simplifying assumption

被引:13
作者
Spanhel, Fabian [1 ,2 ]
Kurz, Malte S. [2 ,3 ]
机构
[1] Ludwig Maximilian Univ Munchen, Dept Stat, Akad Str 1, D-80799 Munich, Germany
[2] Ludwig Maximilian Univ MUnchen, Ctr Quantitat Risk Anal, Akad Str 1, D-80799 Munich, Germany
[3] Scalable Capital GmbH, Quantitat Investment Strategy, Prinzregentenstr 48, D-80538 Munich, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 01期
关键词
Vine copula; pair-copula construction; simplifying assumption; partial vine copula; conditional copula; PAIR-COPULA; DEPENDENCE; CONSTRUCTIONS;
D O I
10.1214/19-EJS1547
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Vine copulas, or pair-copula constructions, have become an important tool in high-dimensional dependence modeling. Commonly, it is assumed that the data generating copula can be represented by a simplified vine copula (SVC). In this paper, we study the simplifying assumption and investigate the approximation of multivariate copulas by SVCs. We introduce the partial vine copula (PVC) which is a particular SVC where to any edge a j-th order partial copula is assigned. The PVC generalizes the partial correlation matrix and plays a major role in the approximation of copulas by SVCs. We investigate to what extent the PVC describes the dependence structure of the underlying copula. We show that, in general, the PVC does not minimize the Kullback-Leibler divergence from the true copula if the simplifying assumption does not hold. However, under regularity conditions, stepwise estimators of pair-copula constructions converge to the PVC irrespective of whether the simplifying assumption holds or not. Moreover, we elucidate why the PVC is often the best feasible SVC approximation in practice.
引用
收藏
页码:1254 / 1291
页数:38
相关论文
共 38 条
[1]   Models for construction of multivariate dependence - a comparison study [J].
Aas, Kjersti ;
Berg, Daniel .
EUROPEAN JOURNAL OF FINANCE, 2009, 15 (7-8) :639-659
[2]   Pair-copula constructions of multiple dependence [J].
Aas, Kjersti ;
Czado, Claudia ;
Frigessi, Arnoldo ;
Bakken, Henrik .
INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) :182-198
[3]   Beyond simplified pair-copula constructions [J].
Acar, Elif F. ;
Genest, Christian ;
Neslehova, Johanna .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 :74-90
[4]  
[Anonymous], 1997, MULTIVARIATE MODELS, DOI [DOI 10.1201/B13150, 10.1201/b13150]
[5]  
[Anonymous], PRINCETON SERIES FIN
[6]  
[Anonymous], UNCERTAINTY ANAL HIG
[7]  
Bedford T, 2002, ANN STAT, V30, P1031
[8]  
Bergsma Wicher Pieter, 2004, Testing conditional independence for continuous random variables
[9]   Selecting and estimating regular vine copulae and application to financial returns [J].
Dissmann, J. ;
Brechmann, E. C. ;
Czado, C. ;
Kurowicka, D. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 59 :52-69
[10]   Time-dependent copulas [J].
Fermanian, Jean-David ;
Wegkamp, Marten H. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 :19-29