Improved bounds for Erdos' Matching Conjecture

被引:102
作者
Frankl, Peter [1 ]
机构
[1] Renyi Inst Math, Budapest, Hungary
关键词
Hypergraphs; Matching number; Erdos Conjecture; Katona's Theorem on shadows of intersecting hypergraphs; INTERSECTION-THEOREMS; SYSTEMS; EDGES;
D O I
10.1016/j.jcta.2013.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result is the following. Let F be a family of k-subsets of an n-set, containing no s + 1 pairwise disjoint edges. Then for n >= (2s + 1)k - s one has vertical bar F vertical bar <= ((n)(k)) - ((n-s)(k)). This upper bound is the best possible and confirms a conjecture of Erdos dating back to 1965. The proof is surprisingly compact. It applies a generalization of Katona's Intersection Shadow Theorem. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1068 / 1072
页数:5
相关论文
共 15 条
[1]   Large matchings in uniform hypergraphs and the conjectures of Erdos and Samuels [J].
Alon, Noga ;
Frank, Peter ;
Huang, Hao ;
Roedl, Vojtech ;
Rucinski, Andrzej ;
Sudakov, Benny .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (06) :1200-1215
[2]   Nonnegative k-sums, fractional covers, and probability of small deviations [J].
Alon, Noga ;
Huang, Hao ;
Sudakov, Benny .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (03) :784-796
[3]  
[Anonymous], ARXIV12024196
[4]   SETS OF INDEPENDENT EDGES OF A HYPERGRAPH [J].
BOLLOBAS, B ;
DAYKIN, DE ;
ERDOS, P .
QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105) :25-32
[5]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[6]  
Erdos Paul, 1965, Ann. Univ. Sci. Budapest. Eotvos Sect. Math, V8, P93
[7]  
Erdos Paul, 1959, Acta Math. Acad. Sci. Hungar, V10, P337, DOI [10.1007/bf02024498, DOI 10.1007/BF02024498]
[8]  
Frankl P., 2012, ARXIV12056847
[9]  
Frankl P., 1995, HDB COMBINATORICS, V2, P1293
[10]  
Frankl P, 2012, ELECTRON J COMB, V19