Toward Robust Anxiety Biomarkers: A Machine Learning Approach in a Large-Scale Sample

被引:34
作者
Boeke, Emily A. [1 ]
Holmes, Avram J. [2 ,3 ]
Phelps, Elizabeth A. [4 ]
机构
[1] NYU, Dept Psychol, 6 Washington Pl, New York, NY 10003 USA
[2] Yale Univ, Dept Psychol, New Haven, CT USA
[3] Yale Univ, Dept Psychiat, New Haven, CT 06520 USA
[4] Harvard Univ, Dept Psychol, 33 Kirkland St, Cambridge, MA 02138 USA
关键词
Anxiety; Biomarker; fMRI; Functional connectivity; Machine learning; Predictive modeling; ELEVATION MYOCARDIAL-INFARCTION; PANIC DISORDER; BIG DATA; FUNCTIONAL CONNECTIVITY; INDIVIDUAL-DIFFERENCES; BRAIN; STATE; CLASSIFICATION; NETWORK; PREDICTION;
D O I
10.1016/j.bpsc.2019.05.018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BACKGROUND: The field of psychiatry has long sought biomarkers that can objectively diagnose patients, predict treatment response, or identify individuals at risk of illness onset. However, reliable psychiatric biomarkers have yet to emerge. The recent application of machine learning techniques to develop neuroimaging-based biomarkers has yielded promising preliminary results. However, much of the work in this domain has not met best practice standards from the field of machine learning. This is especially true for studies of anxiety, creating uncertainty about the potential for anxiety biomarker development. METHODS: We applied machine learning tools to predict trait anxiety from neuroimaging measurements in humans. Using publicly available data from the Brain Genomics Superstruct Project, we compared a suite of neuroimagingbased machine learning models predicting anxiety within a discovery sample (n = 531, 307 women) via k-fold cross-validation, and we tested the final model (a stacked model incorporating region-to-region functional connectivity, amygdala seed-to-voxel connectivity, and volumetric and cortical thickness data) in a held-out, unseen test sample (n = 348, 209 women). RESULTS: Though the best model was able to predict anxiety within the discovery sample (cross-validated R2 of .06, permutation test p < .001), the generalization test within the holdout sample failed (R-2 of 2.04, permutation test p..05). CONCLUSIONS: In this study, we did not find evidence of a generalizable anxiety biomarker. However, we encourage other researchers to investigate this topic, utilizing large samples and proper methodology, to clarify the potential of neuroimaging-based anxiety biomarkers.
引用
收藏
页码:799 / 807
页数:9
相关论文
共 97 条
[1]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[2]   Dimensions and the psychosis phenotype [J].
Allardyce, Judith ;
Suppes, Trisha ;
Van Os, Jim .
INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2007, 16 :S34-S40
[3]   Reproducibility of Single-Subject Functional Connectivity Measurements [J].
Anderson, J. S. ;
Ferguson, M. A. ;
Lopez-Larson, M. ;
Yurgelun-Todd, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2011, 32 (03) :548-555
[4]   Dimensionality and the category of major depressive episode [J].
Andrews, Gavin ;
Brugha, Traoloach ;
Thase, Michael E. ;
Duffy, Farifteh Firoozmand ;
Rucci, Paola ;
Slade, Timothy .
INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2007, 16 :S41-S51
[5]  
[Anonymous], 2014, PROC ASME CONF SMART
[6]  
[Anonymous], 2012, J AM COLL CARDIOL, DOI DOI 10.1016/J.JACC.2012.06.004
[7]  
[Anonymous], 2018, BIOL PSYCHIAT, DOI DOI 10.1016/j.biopsych.2017.08.021
[8]   Scaling to very very large corpora for natural language disambiguation [J].
Banko, M ;
Brill, E .
39TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, 2001, :26-33
[9]   Cognitive-behavioral therapy for late-life anxiety: Similarities and differences between Veteran and community participants [J].
Barrera, Terri L. ;
Cully, Jeffrey A. ;
Amspoker, Amber B. ;
Wilson, Nancy L. ;
Kraus-Schuman, Cynthia ;
Wagener, Paula D. ;
Calleo, Jessica S. ;
Teng, Ellen J. ;
Rhoades, Howard M. ;
Masozera, Nicholas ;
Kunik, Mark E. ;
Stanley, Melinda A. .
JOURNAL OF ANXIETY DISORDERS, 2015, 33 :72-80
[10]   Robust prediction of individual creative ability from brain functional connectivity [J].
Beaty, Roger E. ;
Kenett, Yoed N. ;
Christensen, Alexander P. ;
Rosenberg, Monica D. ;
Benedek, Mathias ;
Chen, Qunlin ;
Fink, Andreas ;
Qiu, Jiang ;
Kwapil, Thomas R. ;
Kane, Michael J. ;
Silvia, Paul J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (05) :1087-1092