Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment

被引:99
作者
Viet-Ha Nhu [1 ,2 ]
Mohammadi, Ayub [3 ]
Shahabi, Himan [4 ,5 ]
Bin Ahmad, Baharin [6 ]
Al-Ansari, Nadhir [7 ]
Shirzadi, Ataollah [8 ]
Clague, John J. [9 ]
Jaafari, Abolfazl [10 ]
Chen, Wei [11 ,12 ]
Nguyen, Hoang [13 ]
机构
[1] Ton Duc Thang Univ, Geog Informat Sci Res Grp, Ho Chi Minh City 700000, Vietnam
[2] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City 700000, Vietnam
[3] Univ Tabriz, Dept Remote Sensing & GIS, Tabriz 5166616471, Iran
[4] Univ Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj 6617715175, Iran
[5] Univ Kurdistan, Kurdistan Studies Inst, Dept Zrebar Lake Environm Res, Sanandaj 6617715175, Iran
[6] Univ Teknol Malaysia UTM, Fac Built Environm & Surveying, Johor Baharu 81310, Malaysia
[7] Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, S-97187 Lulea, Sweden
[8] Univ Kurdistan, Fac Nat Resources, Dept Rangeland & Watershed Management, Sanandaj 6617715175, Iran
[9] Simon Fraser Univ, Dept Earth Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
[10] Agr Res Educ & Extens Org AREEO, Res Inst Forests & Rangelands, POB 64414-356, Tehran, Iran
[11] Xian Univ Sci & Technol, Coll Geol & Environm, Xian 710054, Peoples R China
[12] Minist Nat Resources, Key Lab Coal Resources Explorat & Comprehens Util, Xian 710021, Shaanxi, Peoples R China
[13] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
关键词
machine learning; AdaBoost; alternating decision tree; ensemble model; Cameron Highlands; Malaysia; ANALYTICAL HIERARCHY PROCESS; FUZZY INFERENCE SYSTEM; NAIVE BAYES TREE; SPATIAL PREDICTION; LOGISTIC-REGRESSION; NEURAL-NETWORK; DECISION TREE; ROTATION FOREST; METAHEURISTIC ALGORITHMS; OPTIMIZATION ALGORITHMS;
D O I
10.3390/ijerph17144933
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 111 条
[11]   Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches [J].
Binh Thai Pham ;
Prakash, Indra ;
Singh, Sushant K. ;
Shirzadi, Ataollah ;
Shahabi, Himan ;
Thi-Thu-Trang Tran ;
Dieu Tien Buig .
CATENA, 2019, 175 :203-218
[12]   A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India [J].
Binh Thai Pham ;
Shirzadi, Ataollah ;
Dieu Tien Bui ;
Prakash, Indra ;
Dholakia, M. B. .
INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2018, 33 (02) :157-170
[13]   Bagging based Support Vector Machines for spatial prediction of landslides [J].
Binh Thai Pham ;
Dieu Tien Bui ;
Prakash, Indra .
ENVIRONMENTAL EARTH SCIENCES, 2018, 77 (04)
[14]   Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS [J].
Binh Thai Pham ;
Dieu Tien Bui ;
Prakash, Indra ;
Dholakia, M. B. .
CATENA, 2017, 149 :52-63
[15]   A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India) [J].
Binh Thai Pham ;
Pradhan, Biswajeet ;
Bui, Dieu Tien ;
Prakash, Indra ;
Dholakia, M. B. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 84 :240-250
[16]   Inconsistent relationships between annual tree ring-widths and satellite- measured NDVI in a mountainous subarctic environment [J].
Brehaut, Lucas ;
Danby, Ryan K. .
ECOLOGICAL INDICATORS, 2018, 91 :698-711
[17]  
Bui D.T., 2014, Cartography from pole to pole, DOI DOI 10.1007/978-3-642-32618-922
[18]   GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey) [J].
Çevik, E ;
Topal, T .
ENVIRONMENTAL GEOLOGY, 2003, 44 (08) :949-962
[19]   Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping [J].
Chen, Wei ;
Zhao, Xia ;
Tsangaratos, Paraskevas ;
Shahabi, Himan ;
Ilia, Ioanna ;
Xue, Weifeng ;
Wang, Xiaojing ;
Bin Ahmad, Baharin .
JOURNAL OF HYDROLOGY, 2020, 583
[20]   Modeling flood susceptibility using data-driven approaches of naive Bayes tree, alternating decision tree, and random forest methods [J].
Chen, Wei ;
Li, Yang ;
Xue, Weifeng ;
Shahabi, Himan ;
Li, Shaojun ;
Hong, Haoyuan ;
Wang, Xiaojing ;
Bian, Huiyuan ;
Zhang, Shuai ;
Pradhan, Biswajeet ;
Bin Ahmad, Baharin .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 701