Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment

被引:99
作者
Viet-Ha Nhu [1 ,2 ]
Mohammadi, Ayub [3 ]
Shahabi, Himan [4 ,5 ]
Bin Ahmad, Baharin [6 ]
Al-Ansari, Nadhir [7 ]
Shirzadi, Ataollah [8 ]
Clague, John J. [9 ]
Jaafari, Abolfazl [10 ]
Chen, Wei [11 ,12 ]
Nguyen, Hoang [13 ]
机构
[1] Ton Duc Thang Univ, Geog Informat Sci Res Grp, Ho Chi Minh City 700000, Vietnam
[2] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City 700000, Vietnam
[3] Univ Tabriz, Dept Remote Sensing & GIS, Tabriz 5166616471, Iran
[4] Univ Kurdistan, Fac Nat Resources, Dept Geomorphol, Sanandaj 6617715175, Iran
[5] Univ Kurdistan, Kurdistan Studies Inst, Dept Zrebar Lake Environm Res, Sanandaj 6617715175, Iran
[6] Univ Teknol Malaysia UTM, Fac Built Environm & Surveying, Johor Baharu 81310, Malaysia
[7] Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, S-97187 Lulea, Sweden
[8] Univ Kurdistan, Fac Nat Resources, Dept Rangeland & Watershed Management, Sanandaj 6617715175, Iran
[9] Simon Fraser Univ, Dept Earth Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
[10] Agr Res Educ & Extens Org AREEO, Res Inst Forests & Rangelands, POB 64414-356, Tehran, Iran
[11] Xian Univ Sci & Technol, Coll Geol & Environm, Xian 710054, Peoples R China
[12] Minist Nat Resources, Key Lab Coal Resources Explorat & Comprehens Util, Xian 710021, Shaanxi, Peoples R China
[13] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
关键词
machine learning; AdaBoost; alternating decision tree; ensemble model; Cameron Highlands; Malaysia; ANALYTICAL HIERARCHY PROCESS; FUZZY INFERENCE SYSTEM; NAIVE BAYES TREE; SPATIAL PREDICTION; LOGISTIC-REGRESSION; NEURAL-NETWORK; DECISION TREE; ROTATION FOREST; METAHEURISTIC ALGORITHMS; OPTIMIZATION ALGORITHMS;
D O I
10.3390/ijerph17144933
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 111 条
[1]   A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment [J].
Abedini, Mousa ;
Ghasemian, Bahareh ;
Shirzadi, Ataollah ;
Shahabi, Himan ;
Chapi, Kamran ;
Binh Thai Pham ;
Bin Ahmad, Baharin ;
Dieu Tien Bui .
GEOCARTO INTERNATIONAL, 2019, 34 (13) :1427-1457
[2]   Application of Bivariate and Multivariate Statistical Techniques in Landslide Susceptibility Modeling in Chittagong City Corporation, Bangladesh [J].
Ahmed, Bayes ;
Dewan, Ashraf .
REMOTE SENSING, 2017, 9 (04)
[3]  
[Anonymous], 2020, SUSTAINABILITY BASEL, DOI DOI 10.3390/SU12031063
[4]  
[Anonymous], 1992, Breakthroughs in Statistics: Methodology and Distribution
[5]  
[Anonymous], 2020, INT J ENV RES PUB HE, DOI DOI 10.3390/IJERPH17082749
[6]   Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models [J].
Azareh, Ali ;
Rahmati, Omid ;
Rafiei-Sardooi, Elham ;
Sankey, Joel B. ;
Lee, Saro ;
Shahabi, Himan ;
Bin Ahmad, Baharin .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 655 :684-696
[7]   Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran [J].
Bayat, Mahmoud ;
Ghorbanpour, Mansour ;
Zare, Rozita ;
Jaafari, Abolfazl ;
Binh Thai Pham .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164
[8]   Characterising performance of environmental models [J].
Bennett, Neil D. ;
Croke, Barry F. W. ;
Guariso, Giorgio ;
Guillaume, Joseph H. A. ;
Hamilton, Serena H. ;
Jakeman, Anthony J. ;
Marsili-Libelli, Stefano ;
Newham, Lachlan T. H. ;
Norton, John P. ;
Perrin, Charles ;
Pierce, Suzanne A. ;
Robson, Barbara ;
Seppelt, Ralf ;
Voinov, Alexey A. ;
Fath, Brian D. ;
Andreassian, Vazken .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 40 :1-20
[9]   Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms [J].
Binh Thai Pham ;
Shirzadi, Ataollah ;
Shahabi, Himan ;
Omidvar, Ebrahim ;
Singh, Sushant K. ;
Sahana, Mehebub ;
Asl, Dawood Talebpour ;
Bin Ahmad, Baharin ;
Nguyen Kim Quoc ;
Lee, Saro .
SUSTAINABILITY, 2019, 11 (16)
[10]   Hybrid computational intelligence models for groundwater potential mapping [J].
Binh Thai Pham ;
Jaafari, Abolfazl ;
Prakash, Indra ;
Singh, Sushant K. ;
Nguyen Kim Quoc ;
Dieu Tien Bui .
CATENA, 2019, 182