Mechanofusion-derived Si-alloy/graphite composite electrode materials for Li-ion batteries

被引:31
作者
Cao, Yidan [1 ,2 ]
Hatchard, T. D. [2 ]
Dunlap, R. A. [1 ,3 ,4 ]
Obrovac, M. N. [1 ,2 ,3 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[3] Dalhousie Univ, Clean Technol Res Inst, Halifax, NS B3H 4R2, Canada
[4] Dalhousie Univ, Coll Sustainabil, Halifax, NS B3H 4R2, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
CARBON-COATED SILICON; ANODE MATERIAL; LITHIUM; PERFORMANCE; STORAGE; DESIGN;
D O I
10.1039/c9ta00132h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon-graphite composites are extremely promising negative electrode materials for Li-ion batteries. However, simple and effective methods to synthesize silicon-graphite composites with engineered structures are needed to realize this technology in practical applications. Here, we show that the environmentally friendly and low-cost dry mechanofusion (MF) process can effectively synthesize silicon alloy-graphite composites, in which silicon alloy particles can be well dispersed and embedded between graphite layers. This results in increased tap density and reduced surface area. The special structure provides a way to buffer volume expansion and contraction of the silicon alloy during lithiation and delithiation. As a result of this hierarchical arrangement, superior cyclability and rate capability are achieved compared to simple mixtures, with capacities of 950 mA h g(-1) (i.e. 1473 A h L-1) and 900 mA h g(-1) (i.e. 1432 A h L-1) at 2C and 4C, respectively.
引用
收藏
页码:8335 / 8343
页数:9
相关论文
共 39 条
[31]   Unique effect of mechanical milling on the lithium intercalation properties of different carbons [J].
SalverDisma, F ;
Lenain, C ;
Beaudoin, B ;
Aymard, L ;
Tarascon, JM .
SOLID STATE IONICS, 1997, 98 (3-4) :145-158
[32]   Highly reversible carbon-nano-silicon composite anodes for lithium rechargeable batteries [J].
Si, Qin ;
Hanai, K. ;
Imanishi, N. ;
Kubo, M. ;
Hirano, A. ;
Takeda, Y. ;
Yamamoto, O. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :761-765
[33]  
Suzuki T., 2015, US Pat., Patent No. [9,142,832, 9142832]
[34]  
Wakizaka Y., 2018, US Pat., Patent No. [15/945,066, 15945066]
[35]   Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes [J].
Wang, Wei ;
Kumta, Prashant N. .
ACS NANO, 2010, 4 (04) :2233-2241
[36]   Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries [J].
Wilson, AM ;
Zank, G ;
Eguchi, K ;
Xing, W ;
Dahn, JR .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :195-200
[37]  
Yokoyama T., 1983, KONA, V1, P53, DOI [10.14356/kona.1983010, DOI 10.14356/KONA.1983010]
[38]   Carbon-coated Si as a lithium-ion battery anode material [J].
Yoshio, M ;
Wang, HY ;
Fukuda, K ;
Umeno, T ;
Dimov, N ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :A1598-A1603
[39]   Electrochemical investigation of silicon/carbon composite as anode material for lithium ion batteries [J].
Zuo, Pengjian ;
Wang, Zhenbo ;
Yin, Geping ;
Jia, Dechang ;
Cheng, Xinqun ;
Du, Chunyu ;
Shi, Pengfei .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (09) :3149-3152