Mechanofusion-derived Si-alloy/graphite composite electrode materials for Li-ion batteries

被引:31
作者
Cao, Yidan [1 ,2 ]
Hatchard, T. D. [2 ]
Dunlap, R. A. [1 ,3 ,4 ]
Obrovac, M. N. [1 ,2 ,3 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[3] Dalhousie Univ, Clean Technol Res Inst, Halifax, NS B3H 4R2, Canada
[4] Dalhousie Univ, Coll Sustainabil, Halifax, NS B3H 4R2, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
CARBON-COATED SILICON; ANODE MATERIAL; LITHIUM; PERFORMANCE; STORAGE; DESIGN;
D O I
10.1039/c9ta00132h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon-graphite composites are extremely promising negative electrode materials for Li-ion batteries. However, simple and effective methods to synthesize silicon-graphite composites with engineered structures are needed to realize this technology in practical applications. Here, we show that the environmentally friendly and low-cost dry mechanofusion (MF) process can effectively synthesize silicon alloy-graphite composites, in which silicon alloy particles can be well dispersed and embedded between graphite layers. This results in increased tap density and reduced surface area. The special structure provides a way to buffer volume expansion and contraction of the silicon alloy during lithiation and delithiation. As a result of this hierarchical arrangement, superior cyclability and rate capability are achieved compared to simple mixtures, with capacities of 950 mA h g(-1) (i.e. 1473 A h L-1) and 900 mA h g(-1) (i.e. 1432 A h L-1) at 2C and 4C, respectively.
引用
收藏
页码:8335 / 8343
页数:9
相关论文
共 39 条
[1]   MECHANISM OF THE COMBINED COATING - MECHANOFUSION PROCESSING OF POWDERS [J].
ALONSO, M ;
SATOH, M ;
MIYANAMI, K .
POWDER TECHNOLOGY, 1989, 59 (01) :45-52
[2]   An Investigation of the Fe-Mn-Si System for Li-Ion Battery Negative Electrodes [J].
Cao, Yidan ;
Scott, Benjamin ;
Dunlap, R. A. ;
Wang, Jun ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (02) :A21-A26
[3]   Enhancing electrochemical performance of silicon anodes by dispersing MWCNTs using planetary ball milling [J].
Cetinkaya, T. ;
Guler, M. O. ;
Akbulut, H. .
MICROELECTRONIC ENGINEERING, 2013, 108 :169-176
[4]   Numerical simulation of Mechanofusion system [J].
Chen, WL ;
Dave, RN ;
Pfeffer, R ;
Walton, O .
POWDER TECHNOLOGY, 2004, 146 (1-2) :121-136
[5]   Green Synthesis and Stable Li-Storage Performance of FeSi2/Si@C Nanocomposite for Lithium-Ion Batteries [J].
Chen, Yao ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Yang, Hanxi ;
Ai, Xinping .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (07) :3753-3758
[6]   Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes [J].
Chevrier, Vincent L. ;
Liu, Li ;
Dinh Ba Le ;
Lund, Jesse ;
Molla, Biniam ;
Reimer, Karl ;
Krause, Larry J. ;
Jensen, Lowell D. ;
Figgemeier, Egbert ;
Eberman, Kevin W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) :A783-A791
[7]   Preparation of graphite/nano-powder composite particles and applicability as carbon anode material in a lithium ion battery [J].
Chou, Chuen-Shii ;
Tsou, Ching-Hua ;
Wang, Chin-I .
ADVANCED POWDER TECHNOLOGY, 2008, 19 (04) :383-396
[8]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[9]   Characterization of carbon-coated silicon - Structural evolution and possible limitations [J].
Dimov, N ;
Fukuda, K ;
Umeno, T ;
Kugino, S ;
Yoshio, M .
JOURNAL OF POWER SOURCES, 2003, 114 (01) :88-95
[10]   High Energy Density Calendered Si Alloy/Graphite Anodes [J].
Du, Zhijia ;
Dunlap, R. A. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (10) :A1698-A1705