Attention Branch Network: Learning of Attention Mechanism for Visual Explanation

被引:320
作者
Fukui, Hiroshi [1 ]
Hirakawa, Tsubasa [1 ]
Yamashita, Takayoshi [1 ]
Fujiyoshi, Hironobu [1 ]
机构
[1] Chubu Univ, 1200 Matsumotocho, Kasugai, Aichi, Japan
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.01096
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual explanation enables humans to understand the decision making of deep convolutional neural network (CNN), but it is insufficient to contribute to improving CNN performance. In this paper, we focus on the attention map for visual explanation, which represents a high response value as the attention location in image recognition. This attention region significantly improves the performance of CNN by introducing an attention mechanism that focuses on a specific region in an image. In this work, we propose Attention Branch Network (ABN), which extends a response-based visual explanation model by introducing a branch structure with an attention mechanism. ABN can be applicable to several image recognition tasks by introducing a branch for the attention mechanism and is trainable for visual explanation and image recognition in an end-to-end manner. We evaluate ABN on several image recognition tasks such as image classification, fine-grained recognition, and multiple facial attribute recognition. Experimental results indicate that ABN outperforms the baseline models on these image recognition tasks while generating an attention map for visual explanation. Our code is available(1).
引用
收藏
页码:10697 / 10706
页数:10
相关论文
共 41 条
  • [1] [Anonymous], 2014, INT C LEARN REPR
  • [2] Bahdanau Dzmitry, 2016, INT C LEARN REPR
  • [3] Caruana R., 1993, P 10 INT C INT C MAC, P48, DOI [DOI 10.1016/B978-1-55860-307-3.50012-5, 10.1016/b978-1-55860-307-3.50012-5]
  • [4] Chattopadhyay A., 2017, ARXIV171011063
  • [5] Daniel S., 2017, SMOOTHGRAD REMOVING
  • [6] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [7] Drew L., 2018, ABS180508819 ARXIV
  • [8] Emily H., 2017, ASS ADVANCEMENT ARTI
  • [9] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [10] He K., 2016, CVPR, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]