Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup

被引:137
作者
Li, Hua [1 ]
Liu, Lifen [1 ]
Yang, Fenglin [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ind Ecol & Environm Engn, Sch Environm Sci & Technol, MOE, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHENE OXIDE; GRAPHITE OXIDE; INTERCONNECTED GRAPHENE; 3-DIMENSIONAL GRAPHENE; SHEETS; PERFORMANCE; ADSORPTION; REDUCTION; RECOVERY; SORPTION;
D O I
10.1039/c3ta00166k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Functionalized graphene oxide (KGO) sheets were covalently assembled with pyrrole and reduced to form a 3D foam structure via a multistep route through the hydrolytic condensation (cross-linking), polymerization reactions and hydrothermal reduction of graphene oxide (GO). The formed graphene/polypyrrole foam and its structures were analyzed using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The specific surface area and the total pore volume of the samples were measured using N-2 adsorption. The graphene composite foams have a special 3D structure, with a wide range of macropores (from sub-mm to several hundred mu m) and mesopores within. Due to the intrinsic covalent bonding between graphene sheets and the special 3D structure, not only were the sorption capacities of the graphene/polypyrrole foams determined to be very high for oil (>100 g g(-1)) and solvent, but also the sorption rate was very high.
引用
收藏
页码:3446 / 3453
页数:8
相关论文
共 46 条
[1]   Porous materials for oil spill cleanup: A review of synthesis and absorbing properties [J].
Adebajo, MO ;
Frost, RL ;
Kloprogge, JT ;
Carmody, O ;
Kokot, S .
JOURNAL OF POROUS MATERIALS, 2003, 10 (03) :159-170
[2]   Efficient synthesis of graphene sheets using pyrrole as a reducing agent [J].
Amarnath, Chellachamy Anbalagan ;
Hong, Chang Eui ;
Kim, Nam Hoon ;
Ku, Bon-Cheol ;
Kuila, Tapas ;
Lee, Joong Hee .
CARBON, 2011, 49 (11) :3497-3502
[3]   A pH-sensitive graphene oxide composite hydrogel [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2010, 46 (14) :2376-2378
[4]   Adsorption of hydrocarbons on organo-clays - Implications for oil spill remediation [J].
Carmody, Onuma ;
Frost, Ray ;
Xi, Yunfei ;
Kokot, Serge .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 305 (01) :17-24
[5]   Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite [J].
Chandra, Vimlesh ;
Kim, Kwang S. .
CHEMICAL COMMUNICATIONS, 2011, 47 (13) :3942-3944
[6]   A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode [J].
Chang, Haixin ;
Wang, Guangfeng ;
Yang, An ;
Tao, Xiaoming ;
Liu, Xuqing ;
Shen, Youde ;
Zheng, Zijian .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (17) :2893-2902
[7]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Engineered Graphite Oxide Materials for Application in Water Purification [J].
Gao, Wei ;
Majumder, Mainak ;
Alemany, Lawrence B. ;
Narayanan, Tharangattu N. ;
Ibarra, Miguel A. ;
Pradhan, Bhabendra K. ;
Ajayan, Pulickel M. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (06) :1821-1826
[10]   Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors [J].
Gomez, Humberto ;
Ram, Manoj K. ;
Alvi, Farah ;
Villalba, P. ;
Stefanakos, Elias ;
Kumar, Ashok .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :4102-4108