Paper-mediated controlled densification and low temperature transfer of carbon nanotube forests for electronic interconnect application

被引:24
作者
Jiang, Di [1 ]
Wang, Teng [2 ]
Chen, Si [1 ,3 ,4 ]
Ye, Lilei [2 ]
Liu, Johan [1 ,3 ,4 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden
[2] SHT Smart High Tech AB, SE-41296 Gothenburg, Sweden
[3] Shanghai Univ, Key Lab New Displays & Syst Applicat, Shanghai 200072, Peoples R China
[4] Shanghai Univ, SMIT Ctr, Sch Mech Engn & Automat, Shanghai 200072, Peoples R China
基金
美国国家科学基金会;
关键词
Carbon nanotube; Post-growth processing; Densification; Carbon nanotube transfer; Young's modulus; Carbon nanotube resistance; GROWTH; DENSE; FABRICATION;
D O I
10.1016/j.mee.2012.11.007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on the fabrication and characterization of densified and transferred carbon nanotube forests for electronic interconnect application. A simple, low cost and quality method is developed for densifying vertically-aligned carbon nanotube (VA-CNTs) forests at room temperature. Commercially available paper is utilized in this work to serve as a solvent carrier. Highly densified CNT bundles are formed by the sorption of evaporative liquid from the paper into carbon nanotube forests. An average Young's modulus increase from approximately 15.8 to 111.9 MPa is extrapolated from the measured load displacement curves in the compression tests of the as-densified VA-CNTs. Subsequent low temperature transfer method is used to transfer the VA-CNT bundles onto the target substrate. Four-probe measurement of the transferred VA-CNTs shows resistance of 3.70 +/- 0.04 Omega of each CNT bundle. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 35 条
[1]   Super-compressible foamlike carbon nanotube films [J].
Cao, AY ;
Dickrell, PL ;
Sawyer, WG ;
Ghasemi-Nejhad, MN ;
Ajayan, PM .
SCIENCE, 2005, 310 (5752) :1307-1310
[2]   Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams [J].
Chakrapani, N ;
Wei, BQ ;
Carrillo, A ;
Ajayan, PM ;
Kane, RS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4009-4012
[3]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[4]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[5]   Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth [J].
Correa-Duarte, MA ;
Wagner, N ;
Rojas-Chapana, J ;
Morsczeck, C ;
Thie, M ;
Giersig, M .
NANO LETTERS, 2004, 4 (11) :2233-2236
[6]   Diverse 3D Microarchitectures Made by Capillary Forming of Carbon Nanotubes [J].
De Volder, Michael ;
Tawfick, Sameh H. ;
Park, Sei Jin ;
Copic, Davor ;
Zhao, Zhouzhou ;
Lu, Wei ;
Hart, A. John .
ADVANCED MATERIALS, 2010, 22 (39) :4384-+
[7]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[8]   Carbon nanotube quantum resistors [J].
Frank, S ;
Poncharal, P ;
Wang, ZL ;
de Heer, WA .
SCIENCE, 1998, 280 (5370) :1744-1746
[9]  
Fu YF, 2009, 2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), P44
[10]   Ultrafast Transfer of Metal-Enhanced Carbon Nanotubes at Low Temperature for Large-Scale Electronics Assembly [J].
Fu, Yifeng ;
Qin, Yiheng ;
Wang, Teng ;
Chen, Si ;
Liu, Johan .
ADVANCED MATERIALS, 2010, 22 (44) :5039-+