Joint composite estimating functions in spatiotemporal models

被引:33
作者
Bai, Yun [1 ]
Song, Peter X. -K. [1 ]
Raghunathan, T. E. [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Asymptotics; Correlated data; Dimension reduction; Generalized method of moments; Quadratic inference function; PAIRWISE LIKELIHOOD; GENERALIZED-METHOD; COVARIANCE FUNCTIONS; ESTIMATING EQUATIONS; PARTICULATE MATTER; SAMPLE PROPERTIES; SPACE; STATIONARY; INFERENCE; PREDICTION;
D O I
10.1111/j.1467-9868.2012.01035.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
. Modelling of spatiotemporal processes has received considerable attention in recent statistical research. However, owing to the high dimensionality of the data, the joint modelling of spatial and temporal processes presents a great computational challenge, in both likelihood-based and Bayesian approaches. We propose a joint composite estimating function approach to estimating spatiotemporal covariance structures. This substantially reduces the computational complexity and is more efficient than existing composite likelihood methods. The novelty of the proposed joint composite estimating function is rooted in the construction of three sets of estimating functions from spatial, temporal and spatiotemporal cross-pairs, which results in overidentified estimating functions. Thus, we form a joint inference function in a spirit that is similar to Hansen's generalized method of moments. We show that under practical scenarios the estimator proposed is consistent and asymptotically normal. Simulation studies prove that our method performs well in finite samples. Finally, we illustrate the joint composite estimating function method by estimating the spatiotemporal dependence structure of airborne particulates (PM10) in the north-eastern USA over a 32-month period.
引用
收藏
页码:799 / 824
页数:26
相关论文
共 62 条