Circle-preserving transformations in Finsler spaces

被引:9
作者
Bidabad, Behroz [1 ]
Shen, Zhongmin [2 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran Polytech, Tehran 15914, Iran
[2] Purdue Univ Indianapolis IUPUI, Indiana Univ, Dept Math Sci, Indianapolis, IN 46202 USA
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2012年 / 81卷 / 3-4期
关键词
Finsler space; conformal transformations; circle-preserving; concircular; MANIFOLDS; GEOMETRY;
D O I
10.5486/PMD.2012.5317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, by extending the definition of circle to Finsler geometry, we show that, every circle-preserving local diffeomorphism is conformal. This result implies that in Finsler geometry, the definition of concircular change of metrics, a priori, does not require the conformal assumption.
引用
收藏
页码:435 / 445
页数:11
相关论文
共 15 条
[1]  
AGRAWAL P, 1972, TENSOR, V23, P333
[2]  
[Anonymous], 2006, Initiation to Global Finslerian Geometry
[3]   Classification of complete Finsler manifolds through a second order differential equation [J].
Asanjarani, A. ;
Bidabad, B. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) :434-444
[4]  
Bao D., 2000, RIEMANN FINSLER GEOM
[5]   On compact Finsler spaces of positive constant curvature [J].
Bidabad, Behroz .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (21-22) :1191-1194
[6]  
Bidabad B, 2009, BALK J GEOM APPL, V14, P21
[7]  
CATALANO D. A., 1999, THESIS SWISS FEDERAL
[8]   The conformal theory of curves [J].
Fialkow, Aaron .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1942, 51 (1-3) :435-501
[9]  
Izumi H., 1977, TENSOR, V31, P33
[10]  
Izumi H., 1980, Tensor, N.S., V34, P337