Conformational dynamics of cytochrome c:: Correlation to hydrogen exchange

被引:0
作者
García, AE [1 ]
Hummer, G [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA
关键词
nonlinear dynamics; molecular dynamics; protein hydration; hydration dynamics; strange dynamics;
D O I
10.1002/(SICI)1097-0134(19990801)36:2<175::AID-PROT4>3.0.CO;2-R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We study the dynamical fluctuations of horse heart cytochrome c by molecular dynamics (MD) simulations in aqueous solution, at four temperatures: 300 K, 360 K, 430 K, and 550 K. Each simulation covers a production time of at least 1.5 nanoseconds (ns). The conformational dynamics of the system is analyzed in terms of collective motions that involve the whole protein, and local motions that involve the formation and breaking of intramolecular hydrogen bonds. The character of the MD trajectories can be described within the framework of rugged energy landscape dynamics. The MD trajectories sample multiple conformational minima, with basins in protein conformational space being sampled for a few hundred picoseconds, The trajectories of the system in configurational space can be described in terms of diffusion of a particle in real space with a waiting time distribution due to partial trapping in shallow minima. As a consequence of the hierarchical nature of the dynamics, the mean square displacement autocorrelation function, [\x(t) - x(0)\(2)], exhibits a power law dependence on time, with an exponent of around 0.5 for times shorter than 100 ps, and an exponent of 1.75 for longer times. This power law behavior indicates that the system exhibits suppressed diffusion (sub-diffusion) in sampling of configurational space at time scales shorter than 100 ps, and enhanced (super-diffusion) at longer time scales. The multi-basin feature of the trajectories is present at all temperatures simulated. Structural changes associated with inter-basin displacements correspond to collective motions of the Omega loops and coiled regions and relative motions of the alpha-helices as rigid bodies. Similar motions may be involved in experimentally observed amide hydrogen exchange. However, some groups showing large correlated motions do not expose the amino hydrogens to the solvent. We show that large fluctuations are not necessarily correlated to hydrogen exchange. For example, regions of the proteins forming alpha helices and turns show significant fluctuations, but as rigid bodies, and the hydrogen bonds involved in the formation of these structures do not break in proportion to these fluctuations. Proteins 1999;36:175-191. Published 1999 Wiley-Liss,Inc.(dagger)
引用
收藏
页码:175 / 191
页数:17
相关论文
共 61 条
  • [1] ESSENTIAL DYNAMICS OF PROTEINS
    AMADEI, A
    LINSSEN, ABM
    BERENDSEN, HJC
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04): : 412 - 425
  • [2] PROTEIN STATES AND PROTEIN QUAKES
    ANSARI, A
    BERENDZEN, J
    BOWNE, SF
    FRAUENFELDER, H
    IBEN, IET
    SAUKE, TB
    SHYAMSUNDER, E
    YOUNG, RD
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (15) : 5000 - 5004
  • [3] Correlation between native-state hydrogen exchange and cooperative residue fluctuations from a simple model
    Bahar, I
    Wallqvist, A
    Covell, DG
    Jernigan, RL
    [J]. BIOCHEMISTRY, 1998, 37 (04) : 1067 - 1075
  • [4] HYDROGEN-BOND STRENGTH AND BETA-SHEET PROPENSITIES - THE ROLE OF A SIDE-CHAIN BLOCKING EFFECT
    BAI, YW
    ENGLANDER, SW
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1994, 18 (03): : 262 - 266
  • [5] PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE
    BAI, YW
    MILNE, JS
    MAYNE, L
    ENGLANDER, SW
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01): : 75 - 86
  • [6] Bai YW, 1996, PROTEINS, V24, P145, DOI 10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO
  • [7] 2-I
  • [8] PROTEIN STABILITY PARAMETERS MEASURED BY HYDROGEN-EXCHANGE
    BAI, YW
    MILNE, JS
    MAYNE, L
    ENGLANDER, SW
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (01) : 4 - 14
  • [9] PROTEIN-FOLDING INTERMEDIATES - NATIVE-STATE HYDROGEN-EXCHANGE
    BAI, YW
    SOSNICK, TR
    MAYNE, L
    ENGLANDER, SW
    [J]. SCIENCE, 1995, 269 (5221) : 192 - 197
  • [10] Direct observation of fast protein folding: The initial collapse of apomyoglobin
    Ballew, RM
    Sabelko, J
    Gruebele, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (12) : 5759 - 5764