Thermal phenomena associated with water transport across a fuel cell membrane: Soret and Dufour effects

被引:12
作者
Glavatskiy, K. [1 ]
Pharoah, J. G. [2 ]
Kjelstrup, S. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Chem, N-7491 Trondheim, Norway
[2] Queens Univ, Kingston, ON K7L 3N6, Canada
关键词
Non-equilibrium thermodynamics; Heat fluxes; Water flux; Boundary conditions; Thermal osmosis; Membrane transport; POLYMER; HEAT; CONDUCTIVITIES; OSMOSIS; ENTROPY;
D O I
10.1016/j.memsci.2012.12.023
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We present calculations of the coupling effects that take place when heat and water are transported across a membrane relevant to fuel cells, using the theory of non-equilibrium thermodynamics. Numerical results are given for the Nafion membrane bounded by surfaces of molecular thickness in contact with water vapor of varying relative humidity. Analytical expressions for thermal effects of water transport are given. We show how reversible heat transport (Dufour effects) can be understood in terms of coupling coefficients (heats of transfers). The sign of the enthalpy of adsorption of water in the membrane determines the sign of the coupling coefficient, the Dufour and Soret effect as well as thermal osmosis effects meaning that the effect can be large at interfaces. We show how data presented in the literature can be understood in terms of the presented theory. Using common estimates for transport properties in the membrane and its surface, we find that the more detailed equations predict a 1030% variation in the heat and mass fluxes as the membrane thickness drops below . Analysis of experiments on thermal osmosis suggests that more accurate measurements on the water content as a function of activity are required.
引用
收藏
页码:96 / 104
页数:9
相关论文
共 31 条
[1]   Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell [J].
Burheim, O. ;
Vie, P. J. S. ;
Pharoah, J. G. ;
Kjelstrup, S. .
JOURNAL OF POWER SOURCES, 2010, 195 (01) :249-256
[2]   Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers [J].
Burheim, Odne S. ;
Pharoah, Jon G. ;
Lampert, Hannah ;
Vie, Preben J. S. ;
Kjelstrup, Signe .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (02)
[3]  
Forland K.S., 1988, Irreversible Thermodynamics: Theory and Applications
[4]   Electro-osmosis and Water Uptake in Polymer Electrolytes in Equilibrium with Water Vapor at Low Temperatures [J].
Gallagher, Kevin G. ;
Pivovar, Bryan S. ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :B330-B338
[5]   Resistances for heat and mass transfer through a liquid-vapor interface in a binary mixture [J].
Glavatskiy, K. S. ;
Bedeaux, D. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (23)
[6]   Quantification of Temperature Driven Flow in a Polymer Electrolyte Fuel Cell Using High-Resolution Neutron Radiography [J].
Hatzell, M. C. ;
Turhan, A. ;
Kim, S. ;
Hussey, D. S. ;
Jacobson, D. L. ;
Mench, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (06) :B717-B726
[7]   Transfer coefficients for the liquid-vapor interface of a two-component mixture [J].
Inzoli, I. ;
Kjelstrup, S. ;
Bedeaux, D. ;
Simon, J. M. .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (20) :4533-4548
[8]   Onsager heat of transport for water vapour at the surface of sulfuric acid [J].
James, RA ;
Phillips, LF .
CHEMICAL PHYSICS LETTERS, 2005, 407 (4-6) :358-361
[9]  
Katchalsky A., 1975, NONEQUILIBRIUM THERM
[10]   Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow [J].
Kim, Soowhan ;
Mench, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :B353-B362