Magnetic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures

被引:57
作者
Brullot, Ward [1 ]
Valev, Ventsislav K. [1 ]
Verbiest, Thierry [1 ]
机构
[1] Katholieke Univ Leuven, Dept Chem, Lab Mol Elect & Photon, B-3001 Louvain, Belgium
关键词
Magnetic-plasmonic nanoparticles; Core-shell nanoparticles; Magnetite-gold; Nanorods; Calculated optical properties; METAL NANOPARTICLES; SIZE; ABSORPTION; NANORODS; SHAPE; DEPENDENCE;
D O I
10.1016/j.nano.2011.09.004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnetic-plasmonic nanoparticles, combining magnetic and plasmonic components, are promising structures for use in life sciences. Optical properties of core-shell magnetite-gold nanostructures, such as the wavelength of the plasmon resonance, the extinction cross-section, and the ratio of scattering to absorption at the plasmon wavelength are critical parameters in the search for the most suitable particles for envisioned applications. Using Mie theory and the discrete dipole approximation (DDA), optical spectra as a function of composition, size, and shape of core-shell nanospheres and nanorods were calculated. Calculations were done using simulated aqueous media, used throughout the life sciences. Our results indicate that in the advantageous near-infrared region (NIR), although magnetic-plasmonic nanospheres produced by available chemical methods lack the desirable tunability of optical characteristics, magnetic-plasmonic nanorods can achieve the desired optical properties at chemically attainable dimensions. The presented results can aid in the selection of suitable magnetic-plasmonic structures for applications in life sciences.
引用
收藏
页码:559 / 568
页数:10
相关论文
共 52 条
[1]   Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging [J].
Agarwal, A. ;
Huang, S. W. ;
O'Donnell, M. ;
Day, K. C. ;
Day, M. ;
Kotov, N. ;
Ashkenazi, S. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (06)
[2]   Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle [J].
Albaladejo, S. ;
Gomez-Medina, R. ;
Froufe-Perez, L. S. ;
Marinchio, H. ;
Carminati, R. ;
Torrado, J. F. ;
Armelles, G. ;
Garcia-Martin, A. ;
Saenz, J. J. .
OPTICS EXPRESS, 2010, 18 (04) :3556-3567
[3]   Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit [J].
Andres Verges, M. ;
Costo, R. ;
Roca, A. G. ;
Marco, J. F. ;
Goya, G. F. ;
Serna, C. J. ;
Morales, M. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
[4]  
[Anonymous], J MAGN MAGN MAT
[5]  
[Anonymous], J MAGNETISM MAGNETIC
[6]  
[Anonymous], ADV DRUG DELIVERY RE
[7]   Inorganic Nanoparticles in Cancer Therapy [J].
Bhattacharyya, Sanjib ;
Kudgus, Rachel A. ;
Bhattacharya, Resham ;
Mukherjee, Priyabrata .
PHARMACEUTICAL RESEARCH, 2011, 28 (02) :237-259
[8]   Nanoshells Made Easy: Improving Au Layer Growth on Nanoparticle Surfaces [J].
Brinson, Bruce E. ;
Lassiter, J. Britt ;
Levin, Carly S. ;
Bardhan, Rizia ;
Mirin, Nikolay ;
Halas, Naomi J. .
LANGMUIR, 2008, 24 (24) :14166-14171
[9]   One-step wet chemistry for preparation of magnetite nanorods [J].
Chen, SY ;
Feng, J ;
Guo, XF ;
Hong, JM ;
Ding, WP .
MATERIALS LETTERS, 2005, 59 (8-9) :985-988
[10]   Multifunctional Magnetoplasmonic Nanoparticle Assemblies for Cancer Therapy and Diagnostics (Theranostics) [J].
Chen, Wei ;
Xu, Naifeng ;
Xu, Liguang ;
Wang, Libing ;
Li, Zuokun ;
Ma, Wei ;
Zhu, Yingyue ;
Xu, Chuanlai ;
Kotov, Nicholas A. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2010, 31 (02) :228-236