Full Measure Reducibility for Generic One-parameter Family of Quasi-periodic Linear Systems

被引:50
作者
Her, Hai-Long [1 ]
You, Jiangong [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Reducibility; Quasi-periodic; KAM;
D O I
10.1007/s10884-008-9113-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C-omega(Lambda, gl(m, C)) be the set of m x m matrices A(lambda) depending analytically on a parameter. in a closed interval Lambda subset of R. Consider one- parameter families of quasi-periodic linear differential equations: (X) over dot = (A(lambda) + g(omega(1)t, ... , omega(r)t, lambda)) X, where A is an element of C-omega(Lambda, gl(m, C)), g is analytic and sufficiently small. We prove that there is an open and dense set A in C-omega(Lambda, gl(m, C)), such that for each A(lambda). A the equation can be reduced to an equation with constant coefficients by a quasi- periodic linear transformation for almost all lambda is an element of Lambda in Lebesgue measure sense provided that g is sufficiently small. The result gives an affirmative answer to a conjecture of Eliasson (In: Proceeding of Symposia in Pure Mathematics).
引用
收藏
页码:831 / 866
页数:36
相关论文
共 19 条
[1]  
Bogoljubov NN, 1976, METHODS ACCELERATED
[2]  
Coppel W. A., 1977, Bulletin of the Australian Mathematical Society, V16, P61, DOI 10.1017/S0004972700023005
[3]  
Dinaburg EI., 1975, Funct. Anal. Appl, V9, P8
[4]  
Eliasson L.H., 2001, P S PURE MATH, V69, P679
[5]   Discrete one-dimensional quasi-periodic Schrodinger operators with pure point spectrum [J].
Eliasson, LH .
ACTA MATHEMATICA, 1997, 179 (02) :153-196
[6]   FLOQUET SOLUTIONS FOR THE 1-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-EQUATION [J].
ELIASSON, LH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (03) :447-482
[7]   An improved result for positive measure reducibility of quasi-periodic linear systems [J].
He, HL ;
You, JG .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (01) :77-86
[8]   THE ROTATION NUMBER FOR ALMOST PERIODIC POTENTIALS [J].
JOHNSON, R ;
MOSER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (03) :403-438
[9]   SMOOTHNESS OF SPECTRAL SUBBUNDLES AND REDUCIBILITY OF QUASI-PERIODIC LINEAR-DIFFERENTIAL SYSTEMS [J].
JOHNSON, RA ;
SELL, GR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 41 (02) :262-288
[10]   ON THE REDUCIBILITY OF LINEAR-DIFFERENTIAL EQUATIONS WITH QUASI-PERIODIC COEFFICIENTS [J].
JORBA, A ;
SIMO, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 98 (01) :111-124