Unsupervised learning in LSTM recurrent neural networks

被引:0
作者
Klapper-Rybicka, M
Schraudolph, NN
Schmidhuber, J
机构
[1] Stanislaw Staszic Univ Min & Met, Inst Comp Sci, PL-30059 Krakow, Poland
[2] Swiss Fed Inst Technol, Inst Computat Sci, CH-8092 Zurich, Switzerland
[3] IDSIA, CH-6928 Manno, Switzerland
来源
ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS | 2001年 / 2130卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While much work has been done on unsupervised learning in feedforward neural network architectures, its potential with (theoretically more powerful) recurrent networks and time-varying inputs has rarely been explored. Here we train Long Short-Term Memory (LSTM) recurrent networks to maximize two in formation-theoretic objectives for unsupervised learning: Binary Information Gain Optimization (BINGO) and Nonparametric Entropy Optimization (NEO). LSTM learns to discriminate different types of temporal sequences and group them according to a variety of features.
引用
收藏
页码:684 / 691
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1993, Advances in neural information processing systems
[2]  
[Anonymous], 8805 ICS U CAL
[3]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[4]  
Flake GW, 1998, LECT NOTES COMPUT SC, V1524, P145
[5]   Learning to forget: Continual prediction with LSTM [J].
Gers, FA ;
Schmidhuber, J ;
Cummins, F .
NEURAL COMPUTATION, 2000, 12 (10) :2451-2471
[6]  
GERS FA, 2001, IN PRESS IEEE T NEUR
[7]  
GERS FA, 2000, P IJCNN 2000 INT JOI
[8]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[9]  
Hochreiter S., 1991, Untersuchungen zu dynamischen neuronalen netzen
[10]  
LINDSTADT S, 1993, THESIS U COLORADO BO