Transmission Line Fault Location Using Deep Learning Techniques

被引:8
作者
Fan, Rui [1 ]
Yin, Tianzhixi [1 ]
Huang, Renke [1 ]
Lian, Jianming [1 ]
Wang, Shaobu [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99354 USA
来源
2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS) | 2019年
关键词
Fault location; deep learning; convolutional neural network; long short-term memory; transmission line;
D O I
10.1109/naps46351.2019.9000224
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Precisely detecting the fault location on transmission lines can significantly save labor effort and accelerate the repairing and restoration process. This paper presents a novel single-ended fault location approach for transmission lines using modern deep learning techniques. A mixed convolutional neural network with long short-term memory (LSTM) structure are trained to predict the fault distance given the single-ended voltage and current measurements. Convolutional function, pooling layers, and the LSTM structure are used to preserve the translation invariance and capture the temporal correlation of the time-series input data. Advanced deep learning techniques such as adaptive moment estimation and dropout are used to efficiently train the neural network and prevent over-fitting. Extensive studies have demonstrated the accuracy and effectiveness of the deep-learning based, singled-ended fault location approach.
引用
收藏
页数:5
相关论文
共 18 条
  • [1] [Anonymous], 2015, IEEE Std C37.114-2014 (Revision of IEEE Std C37.114-2004), P1
  • [2] Fault location on a transmission line using synchronized voltage measurements
    Brahma, SM
    Girgis, AA
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2004, 19 (04) : 1619 - 1622
  • [3] Ekici S., 2012, APPL SOFT COMPUTING, V12
  • [4] Fan R., 2019, ARXIV190408863
  • [5] Precise Fault Location on Transmission Lines Using Ensemble Kalman Filter
    Fan, Rui
    Liu, Yu
    Huang, Renke
    Diao, Ruisheng
    Wang, Shaobu
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2018, 33 (06) : 3252 - 3255
  • [6] Gaussian Mixture Model-Based Ensemble Kalman Filter for Machine Parameter Calibration
    Fan, Rui
    Huang, Renke
    Diao, Ruisheng
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2018, 33 (03) : 1597 - 1599
  • [7] He K., 2016, IEEE C COMPUT VIS PA, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
  • [8] A practical fault location approach for double circuit transmission lines using single end data
    Kawady, T
    Stenzel, J
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (04) : 1166 - 1173
  • [9] Kingma DP, 2014, ARXIV
  • [10] Dynamic state estimation-based fault locating on transmission lines
    Liu, Yu
    Meliopoulos, A. P. Sakis
    Tan, Zhenyu
    Sun, Liangyi
    Fan, Rui
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2017, 11 (17) : 4184 - 4192