q-Bernstein polynomials related to q-Frobenius-Euler polynomials, l-functions, and q-Stirling numbers

被引:20
作者
Simsek, Yilmaz [1 ]
Bayad, Abdelmejid [2 ]
Lokesha, V. [3 ]
机构
[1] Akdeniz Univ, Dept Math, Fac Sci, TR-07058 Antalya, Turkey
[2] Univ Evry Val dEssone, Dept Math, F-91025 Evry, France
[3] Acharya Inst Technol, Dept Math, Bangalore 90, Karnataka, India
关键词
q-Bernstein polynomials; q-Frobenius-Euler polynomials; l-functions; q-Stirling numbers of the second kind; ZETA-FUNCTION; Q-ANALOG; BERNOULLI; SERIES;
D O I
10.1002/mma.1580
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper was to derive new identities and relations associated with the q-Bernstein polynomials, q-FrobeniusEuler polynomials, l-functions, and q-Stirling numbers of the second kind. We also give some applications related to theses polynomials and numbers. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:877 / 884
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2012, INT J MATH COMPUT
[2]  
Bernstein S., 1912, Comm. Soc. Math. Kharkov, V13, P1
[3]  
Cangül IN, 2010, AIP CONF PROC, V1301, P59, DOI 10.1063/1.3526662
[4]   Q-BERNOULLI NUMBERS AND POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) :987-1000
[5]   THE MULTIPLE HURWITZ ZETA FUNCTION AND THE MULTIPLE HURWITZ-EULER ETA FUNCTION [J].
Choi, Junesang ;
Srivastava, H. M. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (02) :501-522
[6]  
Goldman R, 1995, GRAPHICS GEMS, VV, P149
[7]  
Goldman Ron., 2002, PYRAMID ALGORITHMS D
[8]  
Kac V. G., 2002, Quantum Calculus, V113
[9]  
Kim T., 2007, Advanced Studies in Contemporary Mathematics, V15, P133
[10]  
Kim T, 2002, RUSS J MATH PHYS, V9, P288