The inverse problem of reconstructing reaction-diffusion systems

被引:26
作者
Kaltenbacher, Barbara [1 ]
Rundell, William [2 ]
机构
[1] Alpen Adria Univ Klagenfurt, Dept Math, Klagenfurt, Austria
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
reaction-diffusion system; parameter identification; fixed point iteration; GLOBAL EXISTENCE;
D O I
10.1088/1361-6420/ab8483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the inverse problem of recovering state-dependent source terms in a reaction-diffusion system from overposed data consisting of the values of the state variables either at a fixed finite time (census-type data) or a time trace of their values at a fixed point on the boundary of the spatial domain. We show both uniqueness results and the convergence of an iteration scheme designed to recover these sources. This leads to a reconstructive method and we shall demonstrate its effectiveness by several illustrative examples.
引用
收藏
页数:34
相关论文
共 32 条
[1]  
Djrbashian M., 1993, Harmonic Analysis and Boundary Value Problems in the Complex Domain
[2]  
Djrbashian M M, 1970, IZV AKAD NAUK ARMAJA, V75, P71
[3]  
Djrbashian MM., 1966, Integral Transformations and Representation of Functions in a Complex Domain
[4]   UNICITY IN AN INVERSE PROBLEM FOR AN UNKNOWN REACTION TERM IN A REACTION DIFFUSION EQUATION [J].
DUCHATEAU, P ;
RUNDELL, W .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 59 (02) :155-164
[5]   Cauchy problem for fractional diffusion equations [J].
Eidelman, SD ;
Kochubei, AN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :211-255
[6]  
Friedman A., 1964, Partial differential equations of parabolic type
[7]  
Gilbarg D., 1998, ELLIPTIC PARTIAL DIF
[8]  
Grindrod P, 1996, Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations, V2nd
[9]   The primal-dual active set strategy as a semismooth Newton method [J].
Hintermüller, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) :865-888
[10]   GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS [J].
HOLLIS, SL ;
MARTIN, RH ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :744-761