Omnidirectional flat bands in chiral magnonic crystals

被引:9
作者
Flores-Farias, J. [1 ]
Gallardo, R. A. [1 ]
Brevis, F. [1 ]
Roldan-Molina, Alejandro [2 ]
Cortes-Ortuno, D. [3 ]
Landeros, P. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Fis, Ave Espana 1680, Valparaiso, Chile
[2] Univ Aysen, Calle Obispo Vielmo 62, Coyhaique, Chile
[3] Univ Utrecht, Valeomagnet Lab Ft Hoofddijk, Dept Earth Sci, Budapestlaan 17, NL-3584 CD Utrecht, Netherlands
关键词
SPIN-WAVES; MORIYA INTERACTION; EXCHANGE; SYSTEMS;
D O I
10.1038/s41598-022-20539-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnonic band structure of two-dimensional chiral magnonic crystals is theoretically investigated. The proposed metamaterial involves a three-dimensional architecture, where a thin ferromagnetic layer is in contact with a two-dimensional periodic array of heavy-metal square islands. When these two materials are in contact, an anti-symmetric exchange coupling known as the Dzyaloshinskii-Moriya interaction (DMI) arises, which generates nonreciprocal spin waves and chiral magnetic order. The Landau-Lifshitz equation and the plane-wave method are employed to study the dynamic magnetic behavior. A systematic variation of geometric parameters, the DMI constant, and the filling fraction allows the examination of spin-wave propagation features, such as the spatial profiles of the dynamic magnetization, the isofrequency contours, and group velocities. In this study, it is found that omnidirectional flat magnonic bands are induced by a sufficiently strong Dzyaloshinskii-Moriya interaction underneath the heavy-metal islands, where the spin excitations are active. The theoretical results were substantiated by micromagnetic simulations. These findings are relevant for envisioning applications associated with spin-wave-based logic devices, where the nonreciprocity and channeling of the spin waves are of fundamental and practical scientific interest.
引用
收藏
页数:11
相关论文
共 84 条
[41]   Plane-wave theory of three-dimensional magnonic crystals [J].
Krawczyk, M. ;
Puszkarski, H. .
PHYSICAL REVIEW B, 2008, 77 (05)
[42]   Magnonics: Experiment to prove the concept [J].
Kruglyak, V. V. ;
Hicken, R. J. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 306 (02) :191-194
[43]   Magnonics [J].
Kruglyak, V. V. ;
Demokritov, S. O. ;
Grundler, D. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (26)
[44]  
Kuepferling M., 2020, ARXIV200911830V1
[45]   Band Structure of Helimagnons in MnSi Resolved by Inelastic Neutron Scattering [J].
Kugler, M. ;
Brandl, G. ;
Waizner, J. ;
Janoschek, M. ;
Georgii, R. ;
Bauer, A. ;
Seemann, K. ;
Rosch, A. ;
Pfleiderer, C. ;
Boeni, P. ;
Garst, M. .
PHYSICAL REVIEW LETTERS, 2015, 115 (09)
[46]   Domain wall motion on magnetic nanotubes [J].
Landeros, P. ;
Nunez, Alvaro S. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (03)
[47]   Spin-wave modes in transition from a thin film to a full magnonic crystal [J].
Langer, M. ;
Gallardo, R. A. ;
Schneider, T. ;
Stienen, S. ;
Roldan-Molina, A. ;
Yuan, Y. ;
Lenz, K. ;
Lindner, J. ;
Landeros, P. ;
Fassbender, J. .
PHYSICAL REVIEW B, 2019, 99 (02)
[48]   Role of internal demagnetizing field for the dynamics of a surface-modulated magnonic crystal [J].
Langer, M. ;
Roeder, F. ;
Gallardo, R. A. ;
Schneider, T. ;
Stienen, S. ;
Gatel, C. ;
Huebner, R. ;
Bischoff, L. ;
Lenz, K. ;
Lindner, J. ;
Landeros, P. ;
Fassbender, J. .
PHYSICAL REVIEW B, 2017, 95 (18)
[49]   The building blocks of magnonics [J].
Lenk, B. ;
Ulrichs, H. ;
Garbs, F. ;
Muenzenberg, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 507 (4-5) :107-136
[50]   Artificial flat band systems: from lattice models to experiments [J].
Leykam, Daniel ;
Andreanov, Alexei ;
Flach, Sergej .
ADVANCES IN PHYSICS-X, 2018, 3 (01) :1-25