Quantum relaxation and finite-size effects in the XY chain in a transverse field after global quenches

被引:40
作者
Blass, B. [1 ]
Rieger, H. [1 ]
Igloi, F. [2 ,3 ]
机构
[1] Univ Saarland, D-66041 Saarbrucken, Germany
[2] Inst Solid State Phys & Opt, Wigner Res Ctr, H-1525 Budapest, Hungary
[3] Univ Szeged, Inst Theoret Phys, H-6720 Szeged, Hungary
关键词
DYNAMICS;
D O I
10.1209/0295-5075/99/30004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider global quenches in the quantum XY chain in a transverse field and study the nonequilibrium relaxation of the magnetization and the correlation function as well as the entanglement entropy in finite systems. For quenches in the ordered phase the exact results are well described by a semiclassical theory (SCT) in terms of ballistically moving quasi-particle pairs. For finite systems quasi-periodic behaviour of the dynamical evolution of the local order parameter and the correlation functions is predicted correctly including the period length, an exponential relaxation, a quasi-stationary regime and an exponential recurrence in one period. In the thermodynamic limit the SCT is exact for the entanglement entropy and its modified version following the method of Calabrese P. et al., J. Stat. Mech. (2012) P07016, is exact for the magnetization and the correlation function, too. The stationary correlation function is shown to be described by a generalized Gibbs ensemble. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 60 条
[51]   Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate [J].
Sadler, L. E. ;
Higbie, J. M. ;
Leslie, S. R. ;
Vengalattore, M. ;
Stamper-Kurn, D. M. .
NATURE, 2006, 443 (7109) :312-315
[52]   Entropy of Isolated Quantum Systems after a Quench [J].
Santos, Lea F. ;
Polkovnikov, Anatoli ;
Rigol, Marcos .
PHYSICAL REVIEW LETTERS, 2011, 107 (04)
[53]   Dynamics in the Ising field theory after a quantum quench [J].
Schuricht, Dirk ;
Essler, Fabian H. L. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
[54]   Quench dynamics across quantum critical points [J].
Sengupta, K ;
Powell, S ;
Sachdev, S .
PHYSICAL REVIEW A, 2004, 69 (05) :053616-1
[55]   Statistics of the work done on a quantum critical system by quenching a control parameter [J].
Silva, Alessandro .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)
[56]   Zamolodchikov-Faddeev algebra and quantum quenches in integrable field theories [J].
Sotiriadis, S. ;
Fioretto, D. ;
Mussardo, G. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
[57]   Quantum quench from a thermal initial state [J].
Sotiriadis, S. ;
Calabrese, P. ;
Cardy, J. .
EPL, 2009, 87 (02)
[58]  
Trotzky S, 2012, NAT PHYS, V8, P325, DOI [10.1038/NPHYS2232, 10.1038/nphys2232]
[59]   Exact Infinite-Time Statistics of the Loschmidt Echo for a Quantum Quench [J].
Venuti, Lorenzo Campos ;
Jacobson, N. Tobias ;
Santra, Siddhartha ;
Zanardi, Paolo .
PHYSICAL REVIEW LETTERS, 2011, 107 (01)
[60]   THE SPONTANEOUS MAGNETIZATION OF A 2-DIMENSIONAL ISING MODEL [J].
YANG, CN .
PHYSICAL REVIEW, 1952, 85 (05) :808-815