Shape Classification Using Hilbert Space Embeddings and Kernel Adaptive Filtering

被引:2
作者
Blandon, J. S. [1 ]
Valencia, C. K. [1 ]
Alvarez, A. [1 ]
Echeverry, J. [1 ]
Alvarez, M. A. [2 ]
Orozco, A. [1 ]
机构
[1] Univ Tecnol Pereira, Automat Res Grp, Pereira, Colombia
[2] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
来源
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018) | 2018年 / 10882卷
关键词
Shape classification; Binary images; HSE; KAF;
D O I
10.1007/978-3-319-93000-8_28
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Shape classification is employed for realizing image object identification and classification tasks. Most of the state-of-the-art approaches use sequential features extracted from contours to classify shapes, either directly, i.e., k-nearest neighbors (KNN), or through stochastic models, i.e., hidden Markov models (HMMs). Here, inspired by probability based metrics using Hilbert space embedding (HSE), we introduce a novel scheme for efficient shape classification. To this end, we highlight relevant curvature patterns from binary images towards a Kernel Adaptive Filtering (KAF)-based enhancement of the maximum mean discrepancy metric. Namely, we test the performance of our approach on the well-known MPEG-7 and 99-Shapes databases. Results show that our strategy can code relevant shape properties from binary images achieving competitive classification results.
引用
收藏
页码:245 / 251
页数:7
相关论文
共 9 条
  • [1] [Anonymous], 2011, KERNEL ADAPTIVE FILT
  • [2] Investigating Hidden Markov Models capabilities in 2D shape classification
    Bicego, M
    Murino, V
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (02) : 281 - 286
  • [3] Quantized Kernel Least Mean Square Algorithm
    Chen, Badong
    Zhao, Songlin
    Zhu, Pingping
    Principe, Jose C.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (01) : 22 - 32
  • [4] Chi-Man Pun, 2010, Proceedings 2010 International Conference on Digital Image Computing: Techniques and Applications (DICTA 2010), P406, DOI 10.1109/DICTA.2010.75
  • [5] Keskin C, 2012, LECT NOTES COMPUT SC, V7577, P852, DOI 10.1007/978-3-642-33783-3_61
  • [6] Luo C., 2018, IEEE ACCESS
  • [7] Tracking deforming objects using particle filtering for geometric active contours
    Rathi, Yogesh
    Vaswani, Namrata
    Tannenbaum, Allen
    Yezzi, Anthony
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (08) : 1470 - 1475
  • [8] Sriperumbudur BK, 2010, J MACH LEARN RES, V11, P1517
  • [9] A Parzen-Based Distance Between Probability Measures as an Alternative of Summary Statistics in Approximate Bayesian Computation
    Zuluaga, Carlos D.
    Valencia, Edgar A.
    Alvarez, Mauricio A.
    Orozco, Alvaro A.
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 50 - 61