On the number of unique expansions in non-integer bases

被引:11
作者
de Vries, Martijn [1 ]
机构
[1] Delft Univ Technol, EEMCS Fac, NL-2628 CD Delft, Netherlands
关键词
Thue-Morse sequence; Greedy expansion; Quasi-greedy expansion; Unique expansion; Univoque sequence; Univoque number; BETA-EXPANSIONS; Q-NI;
D O I
10.1016/j.topol.2008.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q > 1 be a real number and let m = m(q) be the largest integer smaller than q. It is well known that each number x is an element of Jq := [0. Sigma(infinity)(i=1) mq(-i)] can be written as x = Sigma(infinity)(i=1)c(i)q(-i) with integer coefficients 0 <= c(i) < q. If q is a non-integer, then almost every x is an element of J(q) has continuum many expansions of this form. In this note we consider some properties of the set U(q) consisting of numbers x is an element of J(q) having a unique representation of this form. More specifically, we compare the size of the sets U(q) and U(r) for values q and r satisfying 1 < q < r and m(q) = m(r). (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:652 / 657
页数:6
相关论文
共 14 条
[1]  
Baiocchi C., ARXIVMATH07103001
[2]  
Dajani K, 2007, J EUR MATH SOC, V9, P157
[3]  
DAROCZY Z, 1995, PUBL MATH-DEBRECEN, V46, P385
[4]  
DAROCZY Z, 1993, PUBL MATH-DEBRECEN, V42, P397
[5]  
DEVRIES M, ARXIVMATH0609708V3
[6]   CHARACTERIZATION OF THE UNIQUE EXPANSIONS 1=SIGMA-I=1 INFINITY Q-NI AND RELATED PROBLEMS [J].
ERDOS, P ;
JOO, I ;
KOMORNIK, V .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03) :377-390
[7]  
ERDOS P, 1991, ACTA MATH HUNG, V58, P333
[8]  
Erdos P., 1994, ANN U SCI BUDAP, V37, P109
[9]  
Glendinning P, 2001, MATH RES LETT, V8, P535
[10]   Unique developments in non-integer bases [J].
Komornik, V ;
Loreti, P .
AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (07) :636-639