Berry-Esseen bounds for the least squares estimator for discretely observed fractional Ornstein-Uhlenbeck processes

被引:23
作者
Es-Sebaiy, Khalifa [1 ]
机构
[1] Cadi Ayyad Univ, Natl Sch Appl Sci Marrakesh, Gueliz Marrakesh 40000, Morocco
关键词
Fractional Ornstein-Uhlenbeck processes; Discrete-time observation; Least squares estimator; Kolmogorov distance; Central limit theorem; Malliavin calculus; INTEGRATION;
D O I
10.1016/j.spl.2013.06.032
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let theta > 0. We consider a one-dimensional fractional Ornstein-Uhlenbeck process defined as dX(t) = -theta X(t)dt + dB(t), t >= 0, where B is a fractional Brownian motion of Hurst parameter H is an element of (1/2, 1). we are interested in the problem of estimating the unknown parameter theta. For that purpose, we dispose of a discretized trajectory, observed at n equidistant times t(i) = i Delta(n), i = 0, ... , n, and T-n = n Delta(n) denotes the length of the 'observation window'. We assume that Delta(n) -> 0 and T-n -> infinity as n -> infinity. As an estimator of theta we choose the least squares estimator (LSE)(theta) over cap (n). The consistency of this estimator is established. Explicit bounds for the Kolmogorov distance, in the case when H is an element of (1/2, 3/4), in the central limit theorem for the LSE (theta) over cap (n) are obtained. These results hold without any kind of ergodicity on the process X. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2372 / 2385
页数:14
相关论文
共 16 条
  • [1] Alos E., 2003, Stoch. Stoch. Reports, V75, P129
  • [2] Babu GJ., 1978, SANKHYA A, V40, P278
  • [3] Belfadli R., 2011, FRONTIERS SCI ENG, V1, P1
  • [4] Hu Y., 2013, Malliavin calculus and stochastic analysis, Springer Proceedings in Mathematics Statistics, P427, DOI [10.1007/978-1-4614-5906-419, DOI 10.1007/978-1-4614-5906-419]
  • [5] Parameter estimation for fractional Ornstein-Uhlenbeck processes
    Hu, Yaozhong
    Nualart, David
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) : 1030 - 1038
  • [6] Kleptsyna M. L., 2002, STAT INFER STOCH PRO, V5, P229, DOI DOI 10.1023/A:1021220818545
  • [7] Mishra M. N., 2007, INT J STAT MANA SYST, V2, P1
  • [8] Nourdin I., 2007, THEORY RELAT FIELDS, V145, P75
  • [9] Nualart David, 2006, The Malliavin Calculus and Related Topics, V1995
  • [10] Pfanzagl J., 1971, Z WAHR THEOR VERW GE, V18, P37