Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis

被引:126
作者
Blohm, Philipp [1 ,2 ]
Frishman, Goar [1 ]
Smialowski, Pawel [1 ,3 ]
Goebels, Florian [3 ]
Wachinger, Benedikt [1 ,2 ]
Ruepp, Andreas [1 ]
Frishman, Dmitrij [1 ,3 ]
机构
[1] HMGU German Res Ctr Environm Hlth, Inst Bioinformat & Syst Biol MIPS, D-85764 Neuherberg, Germany
[2] Clueda AG, D-80687 Munich, Germany
[3] Tech Univ Munich, Dept Genome Oriented Bioinformat, D-85350 Freising Weihenstephan, Germany
关键词
EXTRACTION; NEGATION; DOMAIN; PDB;
D O I
10.1093/nar/gkt1079
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Knowledge about non-interacting proteins (NIPs) is important for training the algorithms to predict protein-protein interactions (PPIs) and for assessing the false positive rates of PPI detection efforts. We present the second version of Negatome, a database of proteins and protein domains that are unlikely to engage in physical interactions (available online at http://mips.helmholtz-muenchen.de/proj/ppi/negatome). Negatome is derived by manual curation of literature and by analyzing three-dimensional structures of protein complexes. The main methodological innovation in Negatome 2.0 is the utilization of an advanced text mining procedure to guide the manual annotation process. Potential non-interactions were identified by a modified version of Excerbt, a text mining tool based on semantic sentence analysis. Manual verification shows that nearly a half of the text mining results with the highest confidence values correspond to NIP pairs. Compared to the first version the contents of the database have grown by over 300%.
引用
收藏
页码:D396 / D400
页数:5
相关论文
共 27 条
[21]   The Negatome database: a reference set of non-interacting protein pairs [J].
Smialowski, Pawel ;
Pagel, Philipp ;
Wong, Philip ;
Brauner, Barbara ;
Dunger, Irmtraud ;
Fobo, Gisela ;
Frishman, Goar ;
Montrone, Corinna ;
Rattei, Thomas ;
Frishman, Dmitrij ;
Ruepp, Andreas .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D540-D544
[22]   3did: identification and classification of domain-based interactions of known three-dimensional structure [J].
Stein, Amelie ;
Ceol, Arnaud ;
Aloy, Patrick .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D718-D723
[23]   Estimating the size of the human interactome [J].
Stumpf, Michael P. H. ;
Thorne, Thomas ;
de Silva, Eric ;
Stewart, Ronald ;
An, Hyeong Jun ;
Lappe, Michael ;
Wiuf, Carsten .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (19) :6959-6964
[24]   Negative protein-protein interaction datasets derived from large-scale two-hybrid experiments [J].
Trabuco, Leonardo G. ;
Betts, Matthew J. ;
Russell, Robert B. .
METHODS, 2012, 58 (04) :343-348
[25]   The Development of a Universal In Silico Predictor of Protein-Protein Interactions [J].
Valente, Guilherme T. ;
Acencio, Marcio L. ;
Martins, Cesar ;
Lemke, Ney .
PLOS ONE, 2013, 8 (05)
[26]   SIFTS: Structure Integration with Function, Taxonomy and Sequences resource [J].
Velankar, Sameer ;
Dana, Jose M. ;
Jacobsen, Julius ;
van Ginkel, Glen ;
Gane, Paul J. ;
Luo, Jie ;
Oldfield, Thomas J. ;
O'Donovan, Claire ;
Martin, Maria-Jesus ;
Kleywegt, Gerard J. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D483-D489
[27]   Simple sequence-based kernels do not predict protein-protein interactions [J].
Yu, Jiantao ;
Guo, Maozu ;
Needham, Chris J. ;
Huang, Yangchao ;
Cai, Lu ;
Westhead, David R. .
BIOINFORMATICS, 2010, 26 (20) :2610-2614