Global transcriptional profiling reveals Streptococcus agalactiae genes controlled by the MtaR transcription factor

被引:24
作者
Bryan, Joshua D. [1 ]
Liles, Roxanne [1 ]
Cvek, Urska [2 ,3 ]
Trutschl, Marjan [2 ,3 ]
Shelver, Daniel [1 ]
机构
[1] Louisiana State Univ, Hlth Sci Ctr, Dept Microbiol & Immunol, Shreveport, LA 71130 USA
[2] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71115 USA
[3] Louisiana State Univ, Hlth Sci Ctr, Ctr Mol & Tumor Virol, Shreveport, LA 71130 USA
关键词
D O I
10.1186/1471-2164-9-607
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Streptococcus agalactiae ( group B Streptococcus; GBS) is a significant bacterial pathogen of neonates and an emerging pathogen of adults. Though transcriptional regulators are abundantly encoded on the GBS genome, their role in GBS pathogenesis is poorly understood. The mtaR gene encodes a putative LysR-type transcriptional regulator that is critical for the full virulence of GBS. Previous studies have shown that an mtaR-mutant transports methionine at reduced rates and grows poorly in normal human plasma not supplemented with methionine. The decreased virulence of the mtaR mutant was correlated with a methionine transport defect; however, no MtaR-regulated genes were identified. Results: Microarray analysis of wild-type GBS and an mtaR mutant revealed differential expression of 12 genes, including 1 upregulated and 11 downregulated genes in the mtaR mutant. Among the downregulated genes, we identified a cluster of cotranscribed genes encoding a putative methionine transporter (metQ INP) and peptidase (pdsM). The expression of four genes potentially involved in arginine transport (artPQ) and arginine biosynthesis (argGH) was downregulated and these genes localized to two transcriptional units. The virulence factor cspA, which encodes an extracellular protease, was downregulated. Additionally, the SAN_1255 locus, which putatively encodes a protein displaying similarity to plasminogen activators, was downregulated. Conclusion: To our knowledge, this is the first study to describe the global influence of MtaR on GBS gene expression. This study implicates the metQINP genes as encoding the MtaR-regulated methionine transporter, which may provide a mechanistic explanation for the methionine-dependent growth defect of the mtaR mutant. In addition to modulating the expression of genes involved in metabolism and amino acid transport, inactivation of mtaR affected the expression of other GBS genes implicated in pathogenesis. These findings suggest the possibility that MtaR may play a multifaceted role in GBS pathogenesis by regulating the expression of numerous genes.
引用
收藏
页数:12
相关论文
共 41 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[3]   A role for C5 and C5a-ase in the acute neutrophil response to group B streptococcal infections [J].
Bohnsack, JF ;
Widjaja, K ;
Ghazizadeh, S ;
Rubens, CE ;
Hillyard, DR ;
Parker, CJ ;
Albertine, KH ;
Hill, HR .
JOURNAL OF INFECTIOUS DISEASES, 1997, 175 (04) :847-855
[4]   Genomic diversity and evolution within the species Streptococcus agalactiae [J].
Brochet, Mathieu ;
Couve, Elisabeth ;
Zouine, Mohamed ;
Vallaeys, Tatiana ;
Rusniok, Christophe ;
Lamy, Marie-Cecile ;
Buchrieser, Carmen ;
Trieu-Cuot, Patrick ;
Kunst, Frank ;
Poyart, Claire ;
Glaser, Philippe .
MICROBES AND INFECTION, 2006, 8 (05) :1227-1243
[5]   Streptococcus iniae phosphoglucomutase is a virulence factor an a target for vaccine development [J].
Buchanan, JT ;
Stannard, JA ;
Lauth, X ;
Ostland, VE ;
Powell, HC ;
Westerman, ME ;
Nizet, V .
INFECTION AND IMMUNITY, 2005, 73 (10) :6935-6944
[6]   Pathogenesis of group A streptococcal infections [J].
Cunningham, MW .
CLINICAL MICROBIOLOGY REVIEWS, 2000, 13 (03) :470-+
[7]  
CVEK U, 2008, 2 INF VIS BIOM INF 5
[8]   Fibrin and fibrinolysis in infection and host defense [J].
Degen, J. L. ;
Bugge, T. H. ;
Goguen, J. D. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2007, 5 :24-31
[9]   Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy [J].
Doran, KS ;
Nizet, V .
MOLECULAR MICROBIOLOGY, 2004, 54 (01) :23-31
[10]   Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes [J].
Edwards, RJ ;
Taylor, GW ;
Ferguson, M ;
Murray, S ;
Rendell, N ;
Wrigley, A ;
Bai, ZH ;
Boyle, J ;
Finney, SJ ;
Jones, A ;
Russell, HH ;
Turner, C ;
Cohen, J ;
Faulkner, L ;
Sriskandan, S .
JOURNAL OF INFECTIOUS DISEASES, 2005, 192 (05) :783-790