Translation and articulation in biological motion perception

被引:18
作者
Masselink, Jana [1 ]
Lappe, Markus [1 ,2 ]
机构
[1] Univ Munster, Inst Psychol, D-48149 Munster, Germany
[2] Univ Munster, Otto Creutzfeldt Ctr Cognit & Behav Neurosci, D-48149 Munster, Germany
关键词
human walking; biological motion processing; translation; VISUAL-PERCEPTION; FORM; MODEL; RECOGNITION; SELECTIVITY; INTEGRATION; MECHANISMS; NEURONS; STPA; BODY;
D O I
10.1167/15.11.10
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Recent models of biological motion processing focus on the articulational aspect of human walking investigated by point-light figures walking in place. However, in real human walking, the change in the position of the limbs relative to each other (referred to as articulation) results in a change of body location in space over time (referred to as translation). In order to examine the role of this translational component on the perception of biological motion we designed three psychophysical experiments of facing (leftward/rightward) and articulation discrimination (forward/backward and leftward/rightward) of a point-light walker viewed from the side, varying translation direction (relative to articulation direction), the amount of local image motion, and trial duration. In a further set of a forward/backward and a leftward/rightward articulation task, we additionally tested the influence of translational speed, including catch trials without articulation. We found a perceptual bias in translation direction in all three discrimination tasks. In the case of facing discrimination the bias was limited to short stimulus presentation. Our results suggest an interaction of articulation analysis with the processing of translational motion leading to best articulation discrimination when translational direction and speed match articulation. Moreover, we conclude that the global motion of the center-of-mass of the dot pattern is more relevant to processing of translation than the local motion of the dots. Our findings highlight that translation is a relevant cue that should be integrated in models of human motion detection.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 46 条
[1]   SPATIOTEMPORAL ENERGY MODELS FOR THE PERCEPTION OF MOTION [J].
ADELSON, EH ;
BERGEN, JR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (02) :284-299
[2]   Perception of biological motion from limited-lifetime stimuli [J].
Beintema, J. A. ;
Georg, K. ;
Lappe, M. .
PERCEPTION & PSYCHOPHYSICS, 2006, 68 (04) :613-624
[3]   Perception of biological motion without local image motion [J].
Beintema, JA ;
Lappe, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5661-5663
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Preference for Point-Light Human Biological Motion in Newborns: Contribution of Translational Displacement [J].
Bidet-Ildei, Christel ;
Kitromilides, Elenitsa ;
Orliaguet, Jean-Pierre ;
Pavlova, Marina ;
Gentaz, Edouard .
DEVELOPMENTAL PSYCHOLOGY, 2014, 50 (01) :113-120
[6]  
Bonda E, 1996, J NEUROSCI, V16, P3737
[7]   SEEING OBJECTS IN MOTION [J].
BURR, DC ;
ROSS, J ;
MORRONE, MC .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1986, 227 (1247) :249-265
[9]   A cortical area selective for visual processing of the human body [J].
Downing, PE ;
Jiang, YH ;
Shuman, M ;
Kanwisher, N .
SCIENCE, 2001, 293 (5539) :2470-2473
[10]   Neural mechanisms for the recognition of biological movements [J].
Giese, MA ;
Poggio, T .
NATURE REVIEWS NEUROSCIENCE, 2003, 4 (03) :179-192