Stability of abelian complex structures

被引:32
作者
Console, S
Fino, A
Poon, YS
机构
[1] Univ Turin, Dipartimento Matemat, I-10128 Turin, Italy
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
nilmanifold; abelian complex structure; Dolbeault cohomology; Kuranishi deformation;
D O I
10.1142/S0129167X06003576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M = Gamma\G be a nilmanifold endowed with an invariant complex structure. We prove that Kuranishi deformations of abelian complex structures are all invariant complex structures, generalizing a result in [7] for 2-step nilmanifolds. We characterize small deformations that remain abelian. As an application, we observe that at real dimension six, the deformation process of abelian complex structures is stable within the class of nilpotent complex structures. We give an example to show that this property does not hold in higher dimension.
引用
收藏
页码:401 / 416
页数:16
相关论文
共 12 条
[1]  
Barberis ML, 1996, Q J MATH, V47, P389
[2]  
BARBERIS ML, 1995, ANN GLOB ANAL GEOM, V13, P513
[3]  
CLEYTON R, UNPUB
[4]   Dolbeault cohomology of compact nilmanifolds [J].
Console, S ;
Fino, A .
TRANSFORMATION GROUPS, 2001, 6 (02) :111-124
[5]   Compact nilmanifolds with nilpotent complex structures:: Dolbeault cohomology [J].
Cordero, LA ;
Fernández, M ;
Gray, A ;
Ugarte, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5405-5433
[6]  
MACLAUGHLIN C, IN PRESS J LONDON MA
[7]   ON THE COHOMOLOGY OF COMPACT HOMOGENEOUS SPACES OF NILPOTENT LIE GROUPS [J].
NOMIZU, K .
ANNALS OF MATHEMATICS, 1954, 59 (03) :531-538
[8]  
POON YS, IN PRESS J REINE ANG
[9]  
RAGHUNATHAN MS, 1972, ERGEBNISSE MATH GREN, V68
[10]   Complex structures on nilpotent Lie algebras [J].
Salamon, SM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 157 (2-3) :311-333