Integration by parts formula for SPDEs with multiplicative noise and its applications

被引:2
作者
Huang, Xing [1 ]
Liu, Li-Xia [2 ]
Zhang, Shao-Qin [3 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Integration by parts formula; multiplicative noise; stochastic partial differential equations; Malliavin calculus;
D O I
10.1142/S0219493719500242
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By using the Malliavin calculus, the Driver-type integration by parts formula is established for the semigroup associated to SPDEs with Multiplicative Noise. Moreover, estimates on the logarithmic derivative of the transition probability measure are obtained. A concrete example to describe evolution of spin systems on discrete lattices is given to illustrate our main result.
引用
收藏
页数:23
相关论文
共 14 条
  • [1] [Anonymous], 2014, Encyclopedia Math. Appl.
  • [2] [Anonymous], 1997, Stochastic Analysis
  • [3] Bismut formulae and applications for functional SPDEs
    Bao, Jianhai
    Wang, Feng-Yu
    Yuan, Chenggui
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (04): : 509 - 522
  • [4] Integration by parts for heat kernel measures revisited
    Driver, BK
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (08): : 703 - 737
  • [5] Integration by Parts Formula and Applications for SDEs Driven by Fractional Brownian Motions
    Fan, Xiliang
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2015, 33 (02) : 199 - 212
  • [6] Jacob N., 2001, FOURIER ANAL SEMIGRO, VI
  • [7] ON DIFFUSION-PROCESSES AND THEIR SEMIGROUPS IN HILBERT-SPACES WITH AN APPLICATION TO INTERACTING STOCHASTIC-SYSTEMS
    LEHA, G
    RITTER, G
    [J]. ANNALS OF PROBABILITY, 1984, 12 (04) : 1077 - 1112
  • [8] Nualart D., 2005, MALLIAVIN CALCULUS R
  • [9] Stochastic integration in UMD Banach spaces
    van Neerven, J. M. A. M.
    Veraar, M. C.
    Weis, L.
    [J]. ANNALS OF PROBABILITY, 2007, 35 (04) : 1438 - 1478
  • [10] Wang F.-Y., 2013, HARNACK INEQUALITY A