Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain

被引:11
|
作者
Zhang, Xinli [1 ]
Cai, Hong [2 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao 266061, Peoples R China
[2] Qingdao Univ Sci & Technol, Res Inst Math & Interdisciplinary Sci, Qingdao 266061, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 06期
基金
中国国家自然科学基金;
关键词
Time periodic solution; Compressible magneto-micropolar fluids; Topological degree theory; Energy estimates; NAVIER-STOKES EQUATION;
D O I
10.1007/s00033-020-01409-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence and uniqueness of a time periodic solution for the compressible magneto-micropolar fluids with time periodic forces in a periodic domain. More precisely, under some smallness and symmetry assumptions on the external forces, we prove the existence of the periodic solution by a regularized approximation scheme and the topological degree theory. The uniqueness of the periodic solution is obtained by energy estimates.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain
    Xinli Zhang
    Hong Cai
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [2] TIME PERIODIC SOLUTION FOR THE COMPRESSIBLE MAGNETO-MICROPOLAR FLUIDS WITH EXTERNAL FORCES IN R3
    Shi, Qingfang
    Zhang, Xinli
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (03) : 587 - 618
  • [3] The existence and uniqueness of time-periodic solutions to the non-isothermal model for compressible nematic liquid crystals in a periodic domain
    Chen, Shuang
    Guo, Shanshan
    Xu, Qiuju
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) : 947 - 972
  • [4] The existence and uniqueness of time-periodic solutions to the non-isothermal model for compressible nematic liquid crystals in a periodic domain
    Shuang Chen
    Shanshan Guo
    Qiuju Xu
    Acta Mathematica Scientia, 2024, 44 : 947 - 972
  • [5] Periodic solutions to the compressible magnetohydrodynamic equations in a periodic domain
    Cai, Hong
    Tan, Zhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 172 - 193
  • [6] Optimal decay-in-time rates of solutions to the Cauchy problem of 3D compressible magneto-micropolar fluids
    Cui, Xinyu
    Fu, Shengbin
    Sun, Rui
    Tian, Fangfang
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [7] Existence and Uniqueness of Time-Periodic Solutions to the Semigeostrophic
    Rahman, Mohammad
    Wang, Kening
    Zhan, Mei-Qin
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2025, 14 (02) : 263 - 270
  • [8] Global low-energy weak solutions of the compressible magneto-micropolar fluids in the half-space
    Xu, Qiuju
    Tan, Zhong
    Wang, Huaqiao
    Tong, Leilei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [9] Global low-energy weak solutions of the compressible magneto-micropolar fluids in the half-space
    Qiuju Xu
    Zhong Tan
    Huaqiao Wang
    Leilei Tong
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [10] Time periodic solution to the compressible Euler equations with damping in a periodic domain
    Tan, Zhong
    Xu, Qiuju
    Wang, Huaqiao
    NONLINEARITY, 2016, 29 (07) : 2024 - 2049