On the complexity of some hop domination parameters

被引:7
作者
Rad, Nader Jafari [1 ]
Shabani, Elahe [2 ]
机构
[1] Shahed Univ, Dept Math, Tehran, Iran
[2] Shahrood Univ Technol, Fac Math Sci, Shahrood, Iran
关键词
dominating set; hop dominating set; hop independent set; hop Roman dominating function; hop Roman independent dominating function; complexity;
D O I
10.5614/ejgta.2019.7.1.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hop Roman dominating function (HRDF) on a graph G = (V, E) is a function f : V -> {0, 1, 2} having the property that for every vertex v is an element of V with f(v) = 0 there is a vertex u with f(u) = 2 and d(u, v) = 2. The weight of an HRDF f is the sum of its values on V. The minimum weight of an HRDF on G is called the hop Roman domination number of G. An HRDF f is a hop Roman independent dominating function (HRIDF) if for any pair v, w with f(v) > 0 and f(w) > 0, d(v, w) not equal 2. The minimum weight of an HRIDF on G is called the hop Roman independent domination number of G. In this paper, we study the complexity of the hop independent dominating problem, the hop Roman domination function problem and the hop Roman independent domination function problem, and show that the decision problem for each of the above three problems is NP-complete even when restricted to planar bipartite graphs or planar chordal graphs.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1979, Computers and Intractibility: A Guide to the Theory of NP-Completeness
[2]  
[Anonymous], COMPLEXITY COMPUTER
[3]  
[Anonymous], DISCUSSIONES M UNPUB
[4]   Bounds on the hop domination number of a tree [J].
Ayyaswamy, S. K. ;
Krishnakumari, B. ;
Natarajan, C. ;
Venkatakrishnan, Y. B. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :449-455
[5]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[6]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT, V1st, DOI [10.1201/9781482246582, DOI 10.1201/9781482246582]
[7]   On 2-Step and Hop Dominating Sets in Graphs [J].
Henning, Michael A. ;
Rad, Nader Jafari .
GRAPHS AND COMBINATORICS, 2017, 33 (04) :913-927
[8]  
Jalalvand MF, 2017, MATH MONTISNIGRI, V40, P36
[9]   Hop Domination in Graphs-II [J].
Natarajan, C. ;
Ayyaswamy, S. K. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02) :187-199
[10]   Defendens imperium romanum: A classical problem in military strategy [J].
ReVelle, CS ;
Rosing, KE .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (07) :585-594