Synchronizing weighted complex networks

被引:43
作者
Chavez, M [1 ]
Hwang, DU
Amann, A
Boccaletti, S
机构
[1] Hop La Pitie Salpetriere, LENA, CNRS, UPR 640, Paris, France
[2] CNR, Ist Sistemi Complessi, Florence, Italy
[3] Tyndall Natl Inst, Cork, Ireland
关键词
D O I
10.1063/1.2180467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Real networks often consist of local units, which interact with each other via asymmetric and heterogeneous connections. In this work, we explore the constructive role played by such a directed and weighted wiring for the synchronization of networks of coupled dynamical systems. The stability condition for the synchronous state is obtained from the spectrum of the respective coupling matrices. In particular, we consider a coupling scheme in which the relative importance of a link depends on the number of shortest paths through it. We illustrate our findings for networks with different topologies: scale free, small world, and random wirings. (C) 2006 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 48 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[5]   The architecture of complex weighted networks [J].
Barrat, A ;
Barthélemy, M ;
Pastor-Satorras, R ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3747-3752
[6]  
BELYKH I, IN PRESS CHAOS
[7]   Blinking model and synchronization in small-world networks with a time-varying coupling [J].
Belykh, IV ;
Belykh, VN ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :188-206
[8]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[9]   Strong effects of weak interactions in ecological communities [J].
Berlow, EL .
NATURE, 1999, 398 (6725) :330-+
[10]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101