The Gromoll filtration, KO-characteristic classes and metrics of positive scalar curvature

被引:30
作者
Crowley, Diarmuid [1 ]
Schick, Thomas
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
HOMOTOPY TYPE; CONJECTURE; SPHERES;
D O I
10.2140/gt.2013.17.1773
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a closed m-dimensional spin manifold which admits a metric of positive scalar curvature and let R+(X) be the space of all such metrics. For any g is an element of R+(X), Hitchin used the KO-valued alpha-invariant to define a homomorphism A(n-1): pi(n-1)(R+(X), g) -> KOm+n. He then showed that A(0) not equal 0 if m = 8 k or 8k + 1 and that A(1) not equal 0 if m = 8k - 1 or 8k. In this paper we use Hitchin's methods and extend these results by proving that A(8j+1-m) not equal 0 and pi(8j+1-m) (R+(X)) not equal 0 whenever m >= 7 and 8j - m >= 0. The new input are elements with nontrivial alpha-invariant deep down in the Gromoll filtration of the group Gamma(n+1) = pi(0)(Diff(D-n, partial derivative)). We show that alpha(Gamma(8j+2)(8j-5)) not equal {0} for j >= 1. This information about elements existing deep in the Gromoll filtration is the second main new result of this note.
引用
收藏
页码:1773 / 1789
页数:17
相关论文
共 28 条
[11]  
Kirby R. C., 1977, Ann. of Math. Stud., V88
[12]  
Lance T, 2000, ANN MATH STUD, P73
[13]  
LASHOF R, 1965, TOPOLOGY, V3, P357
[14]  
Lawson H. Blaine Jr., 1989, Princeton Mathematical Series, V38
[15]  
Luck W, 2002, ICTP Lect. Notes, V9, P1
[16]  
Novikov SP., 1965, IZV AKAD NAUK SSSR M, V29, P71
[17]   Groups with torsion, bordism and rho invariants [J].
Piazza, Paolo ;
Schick, Thomas .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 232 (02) :355-378
[18]  
Rosenberg Ros83 J., 1983, I HAUTES ETUDES SCI, V58, P197
[19]   A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture [J].
Schick, T .
TOPOLOGY, 1998, 37 (06) :1165-1168
[20]   GENERALIZED POINCARES CONJECTURE IN DIMENSIONS GREATER THAN 4 [J].
SMALE, S .
ANNALS OF MATHEMATICS, 1961, 74 (02) :391-&