Data-Driven Topological Filtering Based on Orthogonal Minimal Spanning Trees: Application to Multigroup Magnetoencephalography Resting-State Connectivity

被引:56
作者
Dimitriadis, Stavros I. [1 ,2 ,3 ,4 ,5 ]
Antonakakis, Marios [6 ]
Simos, Panagiotis [7 ,8 ]
Fletcher, Jack M. [9 ]
Papanicolaou, Andrew C. [10 ,11 ]
机构
[1] Cardiff Univ, Sch Med, Div Psychol Med & Clin Neurosci, Cardiff, S Glam, Wales
[2] Cardiff Univ, Sch Psychol, Brain Res Imaging Ctr CUBRIC, Cardiff, S Glam, Wales
[3] Cardiff Univ, Sch Psychol, Cardiff, S Glam, Wales
[4] Cardiff Univ, Sch Psychol, Brain Res Imaging Ctr CUBRIC, Neuroinformat Grp, Cardiff, S Glam, Wales
[5] Cardiff Univ, Sch Med, MRC Ctr Neuropsychiat Genet & Genom, Cardiff, S Glam, Wales
[6] Westfalian Wilhelms Univ Muenster, Inst Biomagnetism & Biosignal Anal, Munster, Germany
[7] Univ Crete, Sch Med, Iraklion, Greece
[8] Fdn Res & Technol, Inst Comp Sci, Iraklion, Greece
[9] Univ Houston, Dept Psychol, Houston, TX USA
[10] Univ Tennessee, Ctr Hlth Sci, Dept Pediat, Memphis, TN 38163 USA
[11] Le Bonheur Childrens Hosp, Neurosci Inst, Memphis, TN USA
关键词
brain networks; network topology; optimization of information flow; resting state; topological filtering; FUNCTIONAL CONNECTIVITY; BRAIN OSCILLATIONS; NETWORKS; PHASE; MEG; EEG; INFORMATION; DYNAMICS; SINGLE; GRAPHS;
D O I
10.1089/brain.2017.0512
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In the present study, a novel data-driven topological filtering technique is introduced to derive the backbone of functional brain networks relying on orthogonal minimal spanning trees (OMSTs). The method aims to identify the essential functional connections to ensure optimal information flow via the objective criterion of global efficiency minus the cost of surviving connections. The OMST technique was applied to multichannel, resting-state neuromagnetic recordings from four groups of participants: healthy adults (n=50), adults who have suffered mild traumatic brain injury (n=30), typically developing children (n=27), and reading-disabled children (n=25). Weighted interactions between network nodes (sensors) were computed using an integrated approach of dominant intrinsic coupling modes based on two alternative metrics (symbolic mutual information and phase lag index), resulting in excellent discrimination of individual cases according to their group membership. Classification results using OMST-derived functional networks were clearly superior to results using either relative power spectrum features or functional networks derived through the conventional minimal spanning tree algorithm.
引用
收藏
页码:661 / 670
页数:10
相关论文
共 56 条
  • [1] Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example
    Abraham, Alexandre
    Milham, Michael P.
    Di Martino, Adriana
    Craddock, R. Cameron
    Samaras, Dimitris
    Thirion, Bertrand
    Varoquaux, Gael
    [J]. NEUROIMAGE, 2017, 147 : 736 - 745
  • [2] Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury
    Antonakakis, Marios
    Dimitriadis, Stavros I.
    Zervakis, Michalis
    Micheloyannis, Sifis
    Rezaie, Roozbeh
    Babajani-Feremi, Abbas
    Zouridakis, George
    Papanicolaou, Andrew C.
    [J]. INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2016, 102 : 1 - 11
  • [3] Antonakakis M, 2015, IEEE ENG MED BIO, P7426, DOI 10.1109/EMBC.2015.7320108
  • [4] Untangling cross-frequency coupling in neuroscience
    Aru, Juhan
    Aru, Jaan
    Priesemann, Viola
    Wibral, Michael
    Lana, Luiz
    Pipa, Gordon
    Singer, Wolf
    Vicente, Raul
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2015, 31 : 51 - 61
  • [5] The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity
    Basar, Erol
    Duzgun, Aysel
    [J]. INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2016, 103 : 185 - 198
  • [6] Small-world brain networks
    Bassett, Danielle Smith
    Bullmore, Edward T.
    [J]. NEUROSCIENTIST, 2006, 12 (06) : 512 - 523
  • [7] Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels
    Bastos, Andre Moraes
    Vezoli, Julien
    Bosman, Conrado Arturo
    Schoffelen, Jan-Mathijs
    Oostenveld, Robert
    Dowdall, Jarrod Robert
    De Weerd, Peter
    Kennedy, Henry
    Fries, Pascal
    [J]. NEURON, 2015, 85 (02) : 390 - 401
  • [8] Borg Ingwer., 2005, STAT SOCIAL SCI PUBL, V2nd, P207
  • [9] Brain Graphs: Graphical Models of the Human Brain Connectome
    Bullmore, Edward T.
    Bassett, Danielle S.
    [J]. ANNUAL REVIEW OF CLINICAL PSYCHOLOGY, 2011, 7 : 113 - 140
  • [10] Complex brain networks: graph theoretical analysis of structural and functional systems
    Bullmore, Edward T.
    Sporns, Olaf
    [J]. NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) : 186 - 198