Refining Planning for Stereoelectroencephalography: A Prospective Validation of Spatial Priors for Computer-Assisted Planning With Application of Dynamic Learning

被引:7
作者
Vakharia, Vejay N. [1 ,2 ,3 ]
Sparks, Rachel E. [4 ]
Granados, Alejandro [4 ]
Miserocchi, Anna [1 ,2 ,3 ]
McEvoy, Andrew W. [1 ,2 ,3 ]
Ourselin, Sebastien [4 ]
Duncan, John S. [1 ,2 ,3 ]
机构
[1] UCL, Dept Clin & Expt Epilepsy, London, England
[2] Natl Hosp Neurol & Neurosurg, London, England
[3] Chalfont Ctr Epilepsy, London, England
[4] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
基金
英国惠康基金;
关键词
stereoelectroencephalography; EpiNav; computer-assisted planning; machine learning; spatial priors; epilepsy surgery; SEGMENTATION; ELECTRODES; ACCURACY; EPILEPSY;
D O I
10.3389/fneur.2020.00706
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective:Stereoelectroencephalography (SEEG) is a procedure in which many electrodes are stereotactically implanted within different regions of the brain to estimate the epileptogenic zone in patients with drug-refractory focal epilepsy. Computer-assisted planning (CAP) improves risk scores, gray matter sampling, orthogonal drilling angles to the skull and intracerebral length in a fraction of the time required for manual planning. Due to differences in planning practices, such algorithms may not be generalizable between institutions. We provide a prospective validation of clinically feasible trajectories using "spatial priors" derived from previous implantations and implement a machine learning classifier to adapt to evolving planning practices. Methods:Thirty-two patients underwent consecutive SEEG implantations utilizing computer-assisted planning over 2 years. Implanted electrodes from the first 12 patients (108 electrodes) were used as a training set from which entry and target point spatial priors were generated. CAP was then prospectively performed using the spatial priors in a further test set of 20 patients (210 electrodes). A K-nearest neighbor (K-NN) machine learning classifier was implemented as an adaptive learning method to modify the spatial priors dynamically. Results:All of the 318 prospective computer-assisted planned electrodes were implanted without complication. Spatial priors developed from the training set generated clinically feasible trajectories in 79% of the test set. The remaining 21% required entry or target points outside of the spatial priors. The K-NN classifier was able to dynamically model real-time changes in the spatial priors in order to adapt to the evolving planning requirements. Conclusions:We provide spatial priors for common SEEG trajectories that prospectively integrate clinically feasible trajectory planning practices from previous SEEG implantations. This allows institutional SEEG experience to be incorporated and used to guide future implantations. The deployment of a K-NN classifier may improve the generalisability of the algorithm by dynamically modifying the spatial priors in real-time as further implantations are performed.
引用
收藏
页数:10
相关论文
共 24 条
[1]   Effective accuracy of stereoelectroencephalography: robotic 3D versus Talairach orthogonal approaches [J].
Bourdillon, Pierre ;
Chatillon, Claude-Edouard ;
Moles, Alexis ;
Rheims, Sylvain ;
Catenoix, Helene ;
Montavont, Alexandra ;
Ostrowsky-Coste, Karine ;
Boulogne, Sebastien ;
Isnard, Jean ;
Guenot, Marc .
JOURNAL OF NEUROSURGERY, 2019, 131 (06) :1938-1946
[2]   Stereoelectroencephalography: Surgical Methodology, Safety, and Stereotactic Application Accuracy in 500 Procedures [J].
Cardinale, Francesco ;
Cossu, Massimo ;
Castana, Laura ;
Casaceli, Giuseppe ;
Schiariti, Marco Paolo ;
Miserocchi, Anna ;
Fuschillo, Dalila ;
Moscato, Alessio ;
Caborni, Chiara ;
Arnulfo, Gabriele ;
Lo Russo, Giorgio .
NEUROSURGERY, 2013, 72 (03) :353-366
[3]   Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion [J].
Cardoso, M. Jorge ;
Modat, Marc ;
Wolz, Robin ;
Melbourne, Andrew ;
Cash, David ;
Rueckert, Daniel ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (09) :1976-1988
[4]   Cortical surface-based analysis - I. Segmentation and surface reconstruction [J].
Dale, AM ;
Fischl, B ;
Sereno, MI .
NEUROIMAGE, 1999, 9 (02) :179-194
[5]   Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG) [J].
De Momi, E. ;
Caborni, C. ;
Cardinale, F. ;
Casaceli, G. ;
Castana, L. ;
Cossu, M. ;
Mai, R. ;
Gozzo, F. ;
Francione, S. ;
Tassi, L. ;
Lo Russo, G. ;
Antiga, L. ;
Ferrigno, G. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (06) :1087-1097
[6]   Automatic Trajectory Planner for StereoElectroEncephaloGraphy Procedures: A Retrospective Study [J].
De Momi, Elena ;
Caborni, Chiara ;
Cardinale, Francesco ;
Castana, Laura ;
Casaceli, Giuseppe ;
Cossu, Massimo ;
Antiga, Luca ;
Ferrigno, Giancarlo .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (04) :986-993
[7]   Unbiased average age-appropriate atlases for pediatric studies [J].
Fonov, Vladimir ;
Evans, Alan C. ;
Botteron, Kelly ;
Almli, C. Robert ;
McKinstry, Robert C. ;
Collins, D. Louis .
NEUROIMAGE, 2011, 54 (01) :313-327
[8]   Optimizing Trajectories for Cranial Laser Interstitial Thermal Therapy Using Computer-Assisted Planning: A Machine Learning Approach [J].
Li, Kuo ;
Vakharia, Vejay N. ;
Sparks, Rachel ;
Franca, Lucas G. S. ;
Granados, Alejandro ;
McEvoy, Andrew W. ;
Miserocchi, Anna ;
Wang, Maode ;
Ourselin, Sebastien ;
Duncan, John S. .
NEUROTHERAPEUTICS, 2019, 16 (01) :182-191
[9]   Computer-Assisted Versus Manual Planning for Stereotactic Brain Biopsy: A Retrospective Comparative Pilot Study [J].
Marcus, Hani J. ;
Vakharia, Vejay N. ;
Sparks, Rachel ;
Rodionov, Roman ;
Kitchen, Neil ;
McEvoy, Andrew W. ;
Miserocchi, Anna ;
Thorne, Lewis ;
Ourselin, Sebastien ;
Duncan, John S. .
OPERATIVE NEUROSURGERY, 2020, 18 (04) :417-422
[10]   Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications [J].
Mullin, Jeffrey P. ;
Shriver, Michael ;
Alomar, Soha ;
Najm, Imad ;
Bulacio, Juan ;
Chauvel, Patrick ;
Gonzalez-Martinez, Jorge .
EPILEPSIA, 2016, 57 (03) :386-401